

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE INGENIERÍA AGRÍCOLA

LABORATORIO DE AGUA, SUELO, MEDIO AMBIENTE Y FERTIRRIEGO DEPARTAMENTO DE RECURSOS HÍDRICOS DRH

Av. La Molina s/n. Telefax: 6147800 Anexo 226 Lima. E-mail: las-fia@lamolina.edu.pe

032785

ANALISIS DE SUELO - SALES

PROCEDENCIA PROYECTO SOLICITANTE Estudio definitivo de la construccion de nueva S.E. Bayovar 40 MVA 60/20/10 Kv. Y Lineas asociados- EDELNOR SOTELO Y ASOCIADOS Distrito San Juan de Lurigancho - Bayovar

Ing. Nelson Guerreros Pardo
 La Molina, 26 de Setiembre del 2016

RESP. ANALISIS FECHA DE ANALISIS

32785 C-1 / M-1 2052.00 341	Lab. Campo (ppm) (pp
341.07 352.61 8.02	(ppm) (ppm)

SCOROS

Sales Solubles Totales: Determ. de Sales Solubles en suelos y agua subterránea - NTP339.152 - 2002 Cloruro Soluble: Determ. de cloruros solubles en suelos y agua subterránea - NTP339.177 - 2002

Sulfato Soluble: Determ. de sulfatos solubles en suelos y agua subterránea - NTP339.178 - 2002

pH: Método Potenciométrico

ANALISIS DE SUELO - SALES

SOTELO Y ASOCIADOS SOLICITANTE

: Estudio definitivo de la construccion de nueva S.E. Bayovar 40 MVA 60/20/10 Kv. Y Lineas asociados- EDELNOR PROYECTO

: Distrito San Juan de Lurigancho - Bayovar

: Ing. Nelson Guerreros Pardo RESP. ANALISIS **PROCEDENCIA**

: La Molina, 05 de Octubre del 2016 FECHA DE ANALISIS

N°	N°	SST	(bbm)	SO [‡]
Lab.	Campo	(mdd)		(ppm)
32948	EG -01 V-00 Linea Aerea	864.00	110.95	228.70

Sales Solubles Totales: Determ. de Sales Solubles en suelos y agua subterránea - NTP339.152 - 2002

Cloruro Soluble: Determ. de cloruros solubles en suelos y agua subterránea - NTP339.177 - 2002

Sulfato Soluble: Determ. de sulfatos solubles en suelos y agua subterránea - NTP339.178 - 2002

ANALISIS DE SUELO - SALES

SOTELO Y ASOCIADOS SOLICITANTE

Estudio definitivo de la construccion de nueva S.E. Bayovar 40 MVA 60/20/10 Kv. Y Lineas asociados- EDELNOR PROYECTO

: Distrito San Juan de Lurigancho - Bayovar **PROCEDENCIA**

: Ing. Nelson Guerreros Pardo : La Molina, 05 de Octubre del 2016 FECHA DE ANALISIS

RESP. ANALISIS

2	EG -02 V-02 Linea Aerea

Sales Solubles Totales: Determ. de Sales Solubles en suelos y agua subterránea - NTP339.152 - 2002

Cloruro Soluble: Determ. de cloruros solubles en suelos y agua subterránea - NTP339.177 - 2002

Sulfato Soluble: Determ. de sulfatos solubles en suelos y agua subterránea - NTP339.178 - 2002

ANALISIS DE SUELO - SALES

SOTELO Y ASOCIADOS SOLICITANTE

Estudio definitivo de la construccion de nueva S.E. Bayovar 40 MVA 60/20/10 Kv. Y Lineas asociados- EDELNOR PROYECTO

: Distrito San Juan de Lurigancho - Bayovar **PROCEDENCIA**

RESP. ANALISIS

: Ing. Nelson Guerreros Pardo : La Molina, 05 de Octubre del 2016 FECHA DE ANALISIS

\$0 ⁼ ₄ (ppm)	1292.60
(bbm)	205.46
SST (bpm)	3327.00
N° Campo	EG -02 Estacion Mirador
N° Lab.	32950

Sales Solubles Totales: Determ. de Sales Solubles en suelos y agua subterránea - NTP339.152 - 2002

Cloruro Soluble: Determ. de cloruros solubles en suelos y agua subterránea - NTP339.177 - 2002

Sulfato Soluble: Determ. de sulfatos solubles en suelos y agua subterránea - NTP339.178 - 2002

Ensayos de Corte Directo

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-1-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado

Remoldeado (material < Tamiz N° 4)

Sondeo

C-01

Muestra

M-1

Prof. (m.)

0,00 - 3,00

Tot. (iii)			A I The Company of th
Especimen N°		one II	and William Programme
Diametro del anillo (cm.) Altura Inicial de la muestra (cm.) Densidad húmeda inicial (g/cm3.) Densidad seca inicial (g/cm3.) Cont. de humedad inicial (%)	6,36 2,16 1,810 1,763 2,6	6,36 2,16 1,810 1,763 2,6	6,36 2,16 1,810 1,763 2,6
Altura de la muestra antes de aplicar el esfuerzo de corte (cm.)	2,10	2,07	2,03
Altura final de la muestra (cm.) Densidad húmeda final (g/cm3.) Densidad seca final (g/cm3.) Cont. de humedad final (%)	2,06 2,150 1,853 16,0	2,02 2,166 1,885 14,9	1,98 2,195 1,921 14,2
Esfuerzo normal (kg/cm².) Esfuerzo de corte máximo (kg/cm².)	0,5 0,333	1,0 0,642	1,5 0,984
Angulo de fricción interna :	33,1 °		

Angulo de fricción interr Cohesión (Kg/cm².):

0,00

Nota . Los especimenes se remoldearon con el 90% de la densidad proporcionada por el cliente. Muestra remitida e identificada por el solicitante

Realizado por:

Téc. J. Huambo Ch.

Ing. D. Basurto R.

Msc. Ing LUISA E. SHUAN LUCAS Jefa(e) del Laboratorio N° 2 Mecánica de Suelos y Pavimentos UNI - FIC

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-1-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

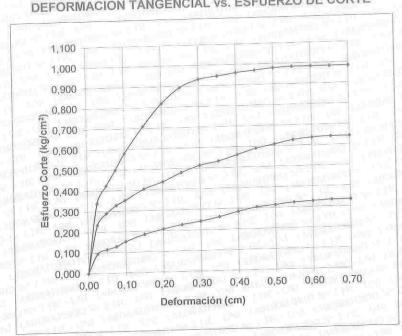
FECHA

03 DE OCTUBRE DEL 2016

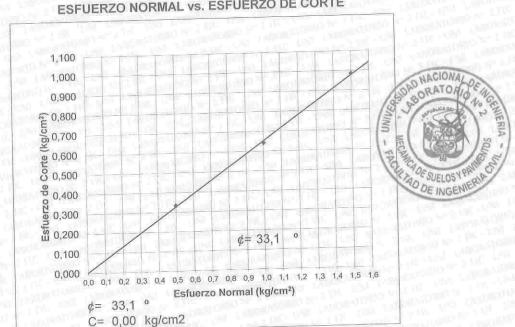
ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado

Remoldeado (material < Tamiz N° 4)


Sondeo Muestra

C-01 M-1


Prof. (m.)

0.00 - 3,00

DEFORMACION TANGENCIAL vs. ESFUERZO DE CORTE

ESFUERZO NORMAL vs. ESFUERZO DE CORTE

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-2-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado

Remoldeado (material < Tamiz N° 4)

Sondeo

C-02 M-2

Muestra Prof. (m.)

0,00 - 3,00

		The second second	
Especimen Nº	are cale again, in		AND MARKET AND LAND
Diametro del anillo (cm.)	6,36	6,36	6,36
Altura Inicial de la muestra (cm.)	2,16	2,16	2,16
Densidad húmeda inicial (g/cm3.)	1,905	1,905	1,905
Densidad seca inicial (g/cm3.)	1,851	1,851	1,851
Cont. de humedad inicial (%)	2,9	2,9	2,9
Altura de la muestra antes de aplicar el esfuerzo de corte (cm.)	2,14	2,12	2,10
Altura final de la muestra (cm.) Densidad húmeda final (g/cm3.) Densidad seca final (g/cm3.) Cont. de humedad final (%)	2,12	2,09	2,07
	2,206	2,213	2,219
	1,884	1,909	1,930
	17,1	15,9	15,0
Esfuerzo normal (kg/cm².)	0,5	1,0	1,5
Esfuerzo de corte máximo (kg/cm².)	0,323	0,646	0,970

Angulo de fricción interna: Cohesión (Kg/cm².):

32,9° 0,00

Nota : Los especimenes se remoldearon con el 80% de la densidad proporcionada por el cliente. Muestra remitida e identificada por el solicitante

Realizado por

Revisado por

Téc. J. Huambo Ch.

Ing. D. Basurto R.

MSC HIG LUISA E SHUAN LUCAS Jefa(e) del Laboratorio N° 2

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-2-1

SOLICITANTE

: SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

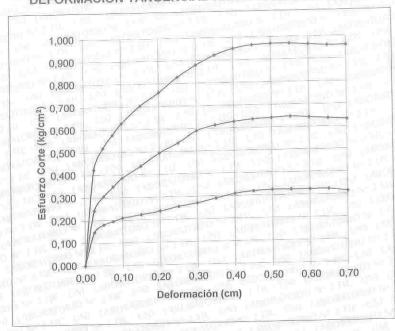
FECHA

03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado

Remoldeado (material < Tamiz N° 4)


Sondeo Muestra

C-02 M-2

Prof. (m.)

0.00 - 3.00

DEFORMACION TANGENCIAL vs. ESFUERZO DE CORTE

ESFUERZO NORMAL vs. ESFUERZO DE CORTE

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-5-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado

Remoldeado (material < Tamiz N° 4)

Sondeo

C-05

Muestra Prof. (m.) M-5 0,00 - 1,20

101. (11)				
Especimen N°			A THE PROPERTY OF THE PARTY OF	
Diametro del anillo (cm.)	6,36	6,36	6,36	
Altura Inicial de la muestra (cm.)	2,16	2,16	2,16	
Densidad húmeda inicial (g/cm3.)	1,700	1,700	1,700	
Densidad seca inicial (g/cm3.)	1,657	1,657	1,657	
Cont. de humedad inicial (%)	2,6	2,6	2,6	
Altura de la muestra antes de aplicar el esfuerzo de corte (cm.)	2,07	2,05	2,01	
Altura final de la muestra (cm.) Densidad húmeda final (g/cm3.) Densidad seca final (g/cm3.) Cont. de humedad final (%)	2,03	1,99	1,95	
	2,139	2,147	2,187	
	1,765	1,794	1,834	
	21,2	19,7	19,3	
Esfuerzo normal (kg/cm².) Esfuerzo de corte máximo (kg/cm².)	0,5	1,0	1,5	
	0,309	0,618	0,927	

Angulo de fricción interna:

31,7 ° 0,00

Cohesión (Kg/cm².):

Nota: Los especímenes se remoldearon con la densidad proporcionada por el cliente. Muestra remitida e identificada por el solicitante

Realizado por

Téc. J. Huambo Ch.

Ing. D. Basurto R.

Msc. Ing LUISA E SHUAN LUCAS Jefa(e) del Laboratorio N° 2 Mecánica de Suelos y Pavimentos UNI - FIC

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-5-1

SOLICITANTE

: SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

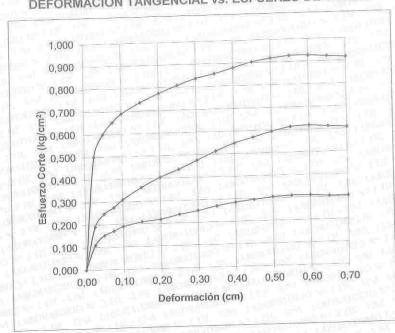
SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

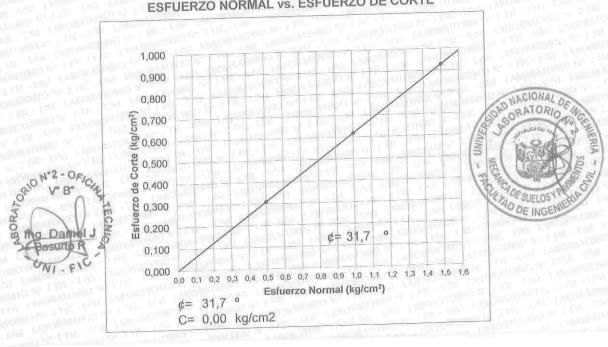
03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado


Remoldeado (material < Tamiz N° 4)

Sondeo Muestra C-05


Prof. (m.)

M-5 0,00 - 1,20

DEFORMACION TANGENCIAL vs. ESFUERZO DE CORTE

ESFUERZO NORMAL vs. ESFUERZO DE CORTE

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-7-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

03 DE OCTUBRE DEL 2016

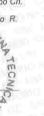
ENSAYO DE CORTE DIRECTO ASTM D 3080

Remoldeado (material < Tamiz N° 4)

Sondeo

C-07 M-7

Muestra Prof. (m.)


1,00 - 1,80

Especimen Nº	and the same		
Diametro del anillo (cm.) Altura Inicial de la muestra (cm.) Densidad húmeda inicial (g/cm3.) Densidad seca inicial (g/cm3.) Cont. de humedad inicial (%)	6,36 2,16 1,750 1,655 5,7	6,36 2,16 1,750 1,655 5,7	6,36 2,16 1,750 1,655 5,7
Altura de la muestra antes de aplicar el esfuerzo de corte (cm.)	2,08	2,03	1,98
Altura final de la muestra (cm.) Densidad húmeda final (g/cm3.) Densidad seca final (g/cm3.) Cont. de humedad final (%)	2,03 2,115 1,759 20,2	1,98 2,155 1,804 19,5	1,93 2,197 1,851 18,7
Esfuerzo normal (kg/cm².) Esfuerzo de corte máximo (kg/cm².)	0,5 0,299	1,0 0,594	1,5 0,894
Angulo de fricción interna : Cohesión (Kg/cm².) :	30,7 ° 0,00		

Nota: Los especímenes se remoldearon con la densidad minima remoldeable requerida para el ensayo. Muestra remitida e identificada por el solicitante

Realizado por:

Téc. J. Huambo Ch.

Msc. Ing LUISA E. SHUAN LUCAS Jefa(e) del Laboratorio N° 2 Mecánica de Suelos y Pavimentos UNI - FIC

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-7-1

SOLICITANTE

: SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

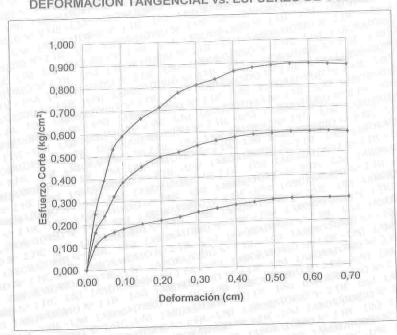
SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

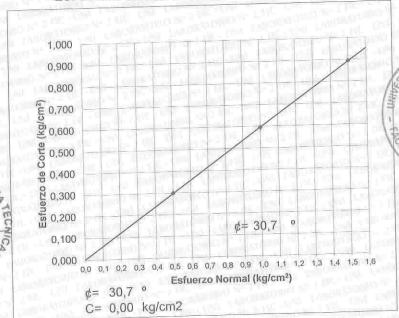
03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado


Remoldeado (material < Tamiz N° 4)

Sondeo Muestra M-7


Prof. (m.)

1,00 - 1,80

DEFORMACION TANGENCIAL vs. ESFUERZO DE CORTE

ESFUERZO NORMAL vs. ESFUERZO DE CORTE

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-11-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado

Remoldeado (material < Tamiz N° 4)

Sondeo Muestra M-15

Prof. (m.)

0,90 - 1,50

South the All Committee of the Committee		STORY OF STORES	e. The Hornest Contracts
Especimen Nº	Sunto Constitution Philo	THE PERSON NAMED IN	THE RESERVE OF THE RE
Diametro del anillo (cm.) Altura Inicial de la muestra (cm.) Densidad húmeda inicial (g/cm3.) Densidad seca inicial (g/cm3.) Cont. de humedad inicial (%)	6,36 2,16 1,777 1,731 2,7	6,36 2,16 1,777 1,731 2,7	6,36 2,16 1,777 1,731 2,7
Altura de la muestra antes de aplicar el esfuerzo de corte (cm.)	2,06	2,03	2,00
Altura final de la muestra (cm.) Densidad húmeda final (g/cm3.) Densidad seca final (g/cm3.) Cont. de humedad final (%)	2,03 2,185 1,844 18,5	1,99 2,204 1,874 17,6	1,97 2,217 1,899 16,8
Esfuerzo normal (kg/cm².) Esfuerzo de corte máximo (kg/cm².)	0,5 0,304	1,0 0,613	1,5 0,913
Angulo de fricción interna : Cohesión (Kg/cm².) :	31,3 ° 0,00		

Nota: Los especímenes se remoldearon con el 85% de la densidad proporcionada por el cliente Muestra remitida e identificada por el solicitante

Téc. J. Huambo Ch.

Ing. D. Basurto R.

MSC. Ing LUISA E. SHUAN LUCAS Jefa(e) del Laboratorio N° 2 Mecánica de Suelos y Pavimentos UNI - FIC

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-11-1

SOLICITANTE

: SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

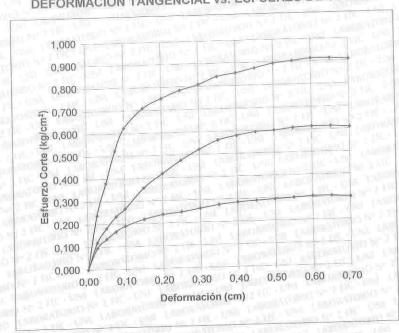
SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado


Remoldeado (material < Tamiz N° 4)

Sondeo Muestra M-15

Prof. (m.)

0,90 - 1,50

DEFORMACION TANGENCIAL vs. ESFUERZO DE CORTE

ESFUERZO NORMAL vs. ESFUERZO DE CORTE

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-15-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado

Remoldeado (material < Tamiz N° 4)

Sondeo Muestra Prof. (m.) C-15 M-17

1,50 - 1,80

			The state of the s
Tarabinan No	Campage 12 Language	mendi (Shengo)	SHOTH OF LAND
Especimen Nº	The state of the s	TOTAL NO.	NOT WANTED AND
THE THE PARTY OF T	6,36	6,36	6,36
Diametro del anillo (cm.)	2,16	2,16	2,16
Altura Inicial de la muestra (cm.)	1,854	1,854	1,854
Densidad húmeda inicial (g/cm3.)	1,822	1,822	1,822
Densidad seca inicial (g/cm3.)		1,8	1,8
Cont. de humedad inicial (%)	1,8	STATE SECRET	THE PROPERTY OF
Altura de la muestra antes de	Se The Street Section Street	0.40	2,10
aplicar el esfuerzo de corte (cm.)	2,14	2,12	2,10
O ST THE TANK THE TANK TANK	2,12	2,10	2,06
Altura final de la muestra (cm.)	2,184	2,197	2,213
Densidad húmeda final (g/cm3.)	1,854	1,877	1,907
Densidad seca final (g/cm3.)		17,0	16,1
Cont. de humedad final (%)	17,8	IN THE SALE	W FREE PARTY TO A STATE OF
= ()(/kg/om²)	0,5	1,0	1,5
Esfuerzo normal (kg/cm².)	0,318	0,627	0,941
Esfuerzo de corte máximo (kg/cm².)	130 237 7 114 237 57 7 11	10000 to 277	STREET, STREET
Angulo de fricción interna :	31,9 °		
Angulo de medion media .	0.01		

Cohesión (Kg/cm².):

Muestra remitida e identificada por el solicitante

Téc. J. Huambo Ch.

Msc. Ing LUISA E. SHUAN LUCAS Jefa(e) del Laboratorio N° 2

Facultad de Ingeniería Civil Laboratorio Nº 2 - Mecánica de Suelos y Pavimentos

Av. Túpac Amaru Nº 210 - Lima 25 - Perú Telefax: 381-3842

INFORME Nº S16-807-15-1

SOLICITANTE

SATEL S.A.C.

PROYECTO

ESTUDIO DEFINITIVO DE LA CONSTRUCCION DE NUEVA

S.E BAYOVAR 40 MVA 60/20/10kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN

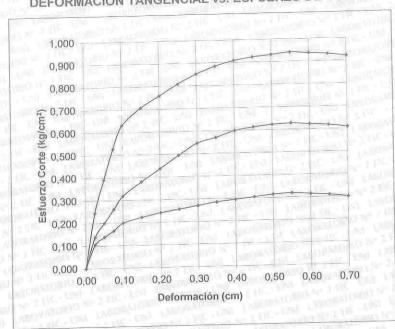
SAN JUAN DE LURIGANCHO - BAYOVAR

FECHA

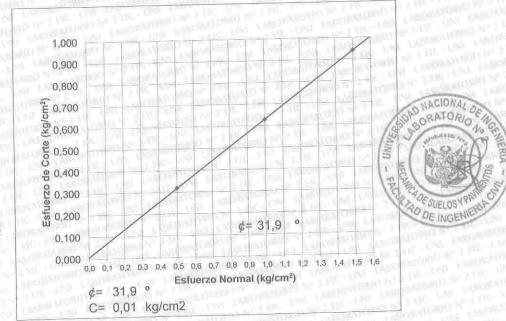
03 DE OCTUBRE DEL 2016

ENSAYO DE CORTE DIRECTO ASTM D 3080

Estado


Remoldeado (material < Tamiz N° 4)

Sondeo Muestra M-17


Prof. (m.)

1,50 - 1,80

DEFORMACION TANGENCIAL vs. ESFUERZO DE CORTE

ESFUERZO NORMAL vs. ESFUERZO DE CORTE

Ensayos de Carga Puntual

Facultad de Ingeniería Geológica, Minera y Metalúrgica Laboratorio de Mecánica de Rocas

Informe:

N° 210/16/LMR/UNI

Empresa:

SOTELO & ASOCIADOS S.A.C.

Proyecto:

"NUEVA SUBESTACION BAYOVAR"

Fecha:

03/10/2016

ENSAYO DE CARGA PUNTUAL

Los ensayos se realizaron según la norma ASTM D5731-02, dando los siguientes resultados:

Muestra	Ubicación	Diámetro equivalente "De" (mm)	Carga de rotura (kN)	Indice de carga puntual "Is" (MPa)	Resistencia a la Compresión Simple (MPa)
		37.2	5.9	4.26	87.4
		49.1	12.5	5.19	117.3
EG – 01 Mirador	47.4	9.9	4.40	98.1	
		37.8	5.1	3.57	73.7
		49.4	11.9	4.87	110.3
		1	Promedio	4.46	97.3
		39.9	4.9	3.08	64.6
EG – 02 Mirador		46.6	6.6	3.04	67.4
	EG – 02	41.0	4.4	2.62	55.5
		39.1	5.6	3.67	76.4
	44.0	4.2	2.17	47.1	
			Promedio	2.92	62.2
EG – 03 Mirador		48.0	3.2	1.39	31.1
	EG – 03 Mirador	30.3	2.2	2.40	46.3
		30.3	2.4	2.62	50.5
	504.05.000.000.000	42.6	4.0	2.20	47.3
		43.7	5.2	2.72	58.9
			Promedio	2.27	46.8
		52.4	13.9	5.05	117.1
		49.1	15.5	6.44	145.5
EG - 01	V - 00	48.9	15,5	6.49	146.4
		39.3	12.5	8.11	169.3
		62.3	16.2	4.18	104.0
			Promedio	6.06	136.5

Facultad de Ingeniería Geológica, Minera y Metalúrgica

Laboratorio de Mecánica de Rocas

Informe:

Nº 210/16/LMR/UNI

Empresa:

SOTELO & ASOCIADOS S.A.C.

Proyecto:

"NUEVA SUBESTACION BAYOVAR"

Fecha:

03/10/2016

ENSAYO DE CARGA PUNTUAL

Los ensayos se realizaron según la norma ASTM D5731-02, dando los siguientes resultados:

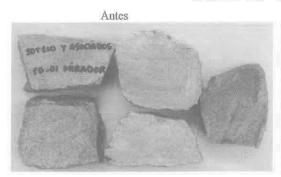
Muestra	Ubicación	Diámetro equivalente "De" (mm)	Carga de rotura (kN)	Indice de carga puntual "Is" (MPa)	Resistencia a la Compresión Simple (MPa)
		52.8	11.8	4.24	98.4
		42.6	11.9	6.56	140.7
EG - 02 V - 02	48.3	13.1	5.63	126.3	
	37.5	9.8	6.97	143.2	
	39.1	9.4	6.15	128.2	
			Promedio	5.91	127.4
		40.1	13.1	8.13	171.0
		48.8	17.3	7.26	163.6
EG - 04	V - 04	40.9	10.3	6.16	130.4
-		42.5	10.7	5.93	127.1
		41.7	10.1	5.81	123.8
			Promedio	6.66	143.2

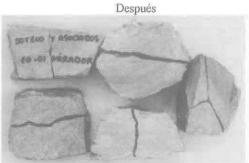
Nota:

La empresa solicitante es responsable de la toma de muestra en campo.

> La información correspondiente a las muestras fue proporcionada por el solicitante.

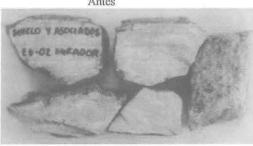
FOTOGRAFIAS DE LOS ENSAYOS REALIZADOS

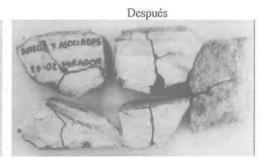



Facultad de Ingeniería Geológica, Minera y Metalúrgica

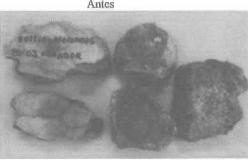
Laboratorio de Mecánica de Rocas

FOTOS: CARGA PUNTUAL


Muestra: EG - 01 / Mirador

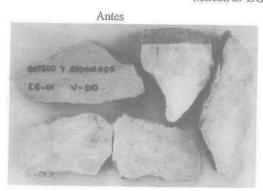


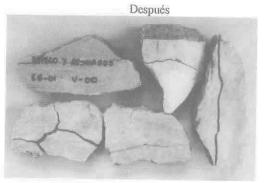
Muestra: EG - 02 / Mirador

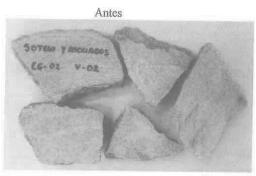

Antes

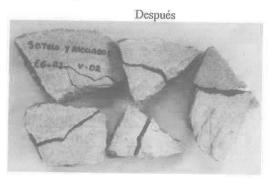
Muestra: EG - 03 / Mirador

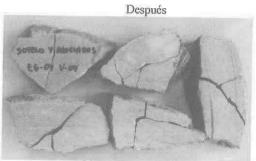
Antes






Facultad de Ingeniería Geológica, Minera y Metalúrgica Laboratorio de Mecánica de Rocas


Muestra: EG - 01 / V - 01


Muestra: EG - 02 / V - 02

Muestra: EG - 04 / V - 04

Ensayos de Propiedades Físicas

Facultad de Ingeniería Geológica, Minera y Metalúrgica

Laboratorio de Mecánica de Rocas

Informe:

Nº 210/16/LMR/UNI

Empresa:

SOTELO & ASOCIADOS S.A.C.

Proyecto:

"NUEVA SUBESTACION BAYOVAR"

Fecha:

03/10/2016

ENSAYO DE PROPIEDADES FISICAS

Los ensayos se realizaron según la norma ASTM C97-02, dando los siguientes resultados:

Muestra	Ubicación	Diámetro* (cm)	Altura (cm)	Densidad Seca (g/cm³)	Densidad Húmeda (g/cm³)	Porosidad Aparente (%)	Absorción (%)	Peso Especifico Aparente (kN/m³)
		4.73	3.10	3.18	3.19	1.76	0.56	31.29
EG-01	Mirador	4.66	3.00	3.27	3.29	2.55	0.78	32.24
		4.55	3.10	3.23	3.26	3.13	0.97	31.98
			Promedio	3.22	3.25	2.48	0.77	31.83
		4.28	3.20	3.07	3.11	3.06	1.00	30.37
EG - 02	Mirador	4.34	3.10	2.95	2.97	1.98	0.67	29.12
		4.12	3.20	3.02	3.04	2.42	0.80	29.81
			Promedio	3.02	3.04	2.49	0.82	29.77
		4.34	2.50	3.16	3.22	6.22	1.97	31.44
EG - 03	Mirador	4.50	2.40	3.19	3.23	3.64	1.14	31.53
		3.89	3.00	2.83	2.88	5.46	1.93	28.14
			Promedio	3.06	3.11	5.11	1.68	30.37
		3.67	3.10	2.99	3.00	1.50	0.50	29.47
EG - 01	V-00	3.78	2.80	3.15	3.17	1.37	0.43	31.05
		3.78	3.00	3.04	3.06	1.58	0.52	29.97
			Promedio	3.06	3.08	1.48	0.48	30.16
		4.34	2.30	3.18	3.20	2.00	0.63	31.31
EG-02	V - 02	4.38	2.20	3.31	3.33	1.87	0.57	32.60
		4.23	2.40	3.48	3.51	2.37	0.68	34.34
			Promedio	3.32	3.34	2.08	0.63	32.75
		4.85	3.00	2.99	3.00	1.26	0.42	29.42
EG - 04	V - 04	4.96	3.10	2.88	2.89	1.35	0.47	28.33
		4.31	3.30	3.02	3.03	1.16	0.38	29.65
	3//		Promedio	2.96	2.97	1.26	0.43	29.13

* Diámetro equivalente

FOTOGRAFIAS DE LOS ENSAYOS REALIZADOS

Facultad de Ingeniería Geológica, Minera y Metalúrgica

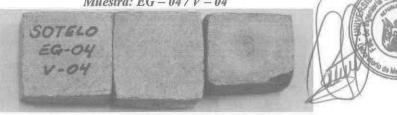
Laboratorio de Mecánica de Rocas

FOTOS: PROPIEDADES FISICAS

Muestra: EG - 01 / Mirador

Muestra: EG - 02 / Mirador

Muestra: EG - 03 / Mirador


Muestra: EG - 01 / V - 01

Muestra: EG - 02 / V - 02

Muestra: EG - 04 / V - 04

Análisis de Ingeniería

LINEA AÉREA Parámetros de Macizo

RESISTENCIA Y DEFORMACION DE LOS MACIZOS ROCOSOS

Versión 1.3

Proyecto: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR

40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

Solicitante: EDELNOR Estación: EG-01

Progresiva Vertice V-00, LINEA AÉREA

Litología: ANDESITA

1.0 Roca intacta

Peso específico	γ_i	:	0.0306	(MN/m ³)
Resistencia a la compresión uniaxial	$\sigma_{\it ci}$:	136.5	(MPa)
Constante de la roca intacta	m_i	:	19	
Relación modular	MR	:	300	
Cohesión	C_i	:	18	(MPa)
Angulo de fricción interna	ϕ_i	:	62	(°)
Módulo de elasticidad	E_i	:	40950	(MPa)
Relación de Poisson	v_i	:	0.2	

2.0 Macizo Rocoso

Valoración de la masa rocosa, RMR 89 (Bieniawski, 1989)	:	52
Índice Geológico de Resistencia, GSI (Hoek et al., 1995)	:	47
Indice, Q (Barton, 1974)	:	2.4
Espaciamiento de discontinuidades (m)	:	0.21
Factor de perturbación de la roca, D	:	1

2.1 Proyecto de ingeniería

Profundidad de Cimentación Df = 1 m

2.2 Estimación de las propiedades de resistencia

(Ruptura global del macizo)

a) Criterio de resistencia Mohr Coulomb

Bieniawski (1976)	C'm	=	2.6	3 Kg/cm ²
	φ' _m	=	26.0	3°
Con criterio de falla de Hoek-Brown	C'm		1.5	5 Kg/cm ²
	φ' _m	=	66.7	7 °
b) Criterio de Falla Generalizado de Hoek-Brown				
	m_b	=	0.43	1
	S	=	0.0001	5
	а	=	0.5	1
Resistencia a la tracción (σ'_{tm})				
	$\sigma_{\it tm}$	=	-s $\sigma_{\it ci}/m_{\it b}$	
	$\sigma_{\it tm}$	=	-0.5	Kg/cm ²
Resistencia a la compresión del macizo rocoso ($\sigma'_{\it cm}$)				
	σ $_{cm}$	=	$\sigma_{\it ci.}{\it s}^a$	
(Inicio de ruptura)	σ $_{cm}$		15.2	Kg/cm ²

Kg/cm²

113.5

 σ $_{cm}$ =

2.3 Estimación de las propiedades de deformación

a) Criterios de deformación de macizos rocosos (Modulo de deformabilidad, E_m)

1.00

- Bieniawski (1978), Serafim y Pereira (1983)	E_m	=	8414	MPa
- Kulhawy y Goodman (1980)	E_m	=	8599.5	MPa
- Hoek (1995)	E_m	=	9830	MPa
- Grimstad y Barton (1993)	E_m	=	9651	MPa
- Gokceoglu et al. (2003)	E_m	=	3138	MPa
- Hoek y Diederichs (2006)	E_m	=	2308	MPa
Valor asumido	E_m	=	2308	MPa

2.4 Esfuerzos in situ

k =

k =	1.50	En rocas no alteradas en superficie				
k =	0.25	En medios homogeneos e isotrópicos en función				
k =	1.0	Valor asumido				
	Esfuerzo vertical	$\sigma_{v} =$	0.03 MPa			
	Esfuerzo horizontal	σ_h =	0.03 MPa			
	Esfuerzo principal mayor	$\sigma_{Imax} =$	0.03 MPa			
	Esfuerzo principal menor	σ _{3max} =	0.03 MPa			

En rocas fracturadas en superficie

2.5 Carga admisible del macizo rocoso

Capacidad admisible (q_{ad})

Hoek et al. (2002)	q_{ult}	=	113.5 Kg/cm ²
Serrrano y Olalla (2001)	q_{ult}	=	$\beta(N_{\beta}$ – ζ)
	β	=	7.4 MPa
	5	=	0.006
	$\sigma*_{01}$	=	0.010
	N_{eta}	=	5.4
	q_{ult}	=	39.6 Kg/cm ²
AASHTO (1996)	q_{ult}	=	$N_{ms} * U_{c}$
	N_{ms}	=	0.1053
	U_{c}	=	1365 Kg/cm ²
	q_{ult}	=	143.702 Kg/cm ²
Criterio de comprobación	q_{ad}	<	0.2 * U _c
	U_{c}	=	1365 Kg/cm ²
	q_{ad}	<	273.0 Kg/cm ²
	q_{ad}	<	0.33 * f'c
	f'c	=	210.0 Kg/cm ²
	q_{ad}	<	69.3 Kg/cm ²

6.0 Parámetros para el diseño en ingeniería

ProgresivaVertice V-00, LINEA AÉREA

Litología: ANDESITA			
Criterio de resistencia Mohr Coulomb	C'm	=	1.5 Kg/cm ²
	φ' _m	=	66.7 °
Criterio de Falla Generalizado de Hoek-Brown	m_b	=	0.431
	S	=	0.000
	а	=	0.507
Angulo de arrancamiento	λ	=	40.0 °
Parámetros de deformación	E_m	=	2308 MPa
Capacidad de soporte última	q _{ult}	=	39.6 Kg/cm ²
Capacidad admisible del macizo rocoso	q_{ad}	=	13.2 Kg/cm ²
Adherencia con el concreto (Littlejohn y Bruce 1975)	τ	=	22.8 Kg/cm ²

RESISTENCIA Y DEFORMACION DE LOS MACIZOS ROCOSOS

Versión 1.3

Proyecto: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR

40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

Solicitante: EDELNOR Estación: EG-02

Progresiva Vertice V-02, LINEA AÉREA

Litología: GRANITO

1.0 Roca intacta

Peso específico	γ_i	:	0.0332	(MN/m ³)
Resistencia a la compresión uniaxial	$\sigma_{\it ci}$:	127.4	(MPa)
Constante de la roca intacta	m_i	:	33	
Relación modular	MR	:	300	
Cohesión	C_i	:	13	(MPa)
Angulo de fricción interna	ϕ_i	:	68	(°)
Módulo de elasticidad	E_i	:	38220	(MPa)
Relación de Poisson	v_i	:	0.2	

2.0 Macizo Rocoso

Valoración de la masa rocosa, RMR 89 (Bieniawski, 1989)	:	50
Índice Geológico de Resistencia, GSI (Hoek et al., 1995)	:	45
Indice, Q (Barton, 1974)	:	1.9
Espaciamiento de discontinuidades (m)	:	0.19
Factor de perturbación de la roca, D	:	1

2.1 Proyecto de ingeniería

Profundidad de Cimentación Df = 1 m

2.2 Estimación de las propiedades de resistencia

(Ruptura global del macizo)

a) Criterio de resistencia Mohr Coulomb

Bieniawski (1976)	C'm	=	2.5 Kg	/cm ²
	φ' _m		25.5 °	
Con criterio de falla de Hoek-Brown	C'm		1.0 ^{Kg}	/cm ²
	φ' _m	=	70.6 °	
b) Criterio de Falla Generalizado de Hoek-Brown				
	m_b	=	0.649	
	s	=	0.00010	
	а	=	0.51	
Resistencia a la tracción (σ'_{tm})				
	$\sigma_{\it tm}$	=	-s $\sigma_{\it ci}/m_{\it b}$	
	$\sigma_{\it tm}$	=	-0.2 Kg/	/cm ²
Resistencia a la compresión del macizo rocoso $(\sigma'_{\it cm})$				
	σ $_{\it cm}$	=	$\sigma_{\it ci.}{ m s}^a$	
(Inicio de ruptura)	σ $_{cm}$		11.9 Kg	/cm ²

Kg/cm²

129.3

 σ $_{cm}$ =

2.3 Estimación de las propiedades de deformación

a) Criterios de deformación de macizos rocosos (Modulo de deformabilidad, E_m)

1.00

- Bieniawski (1978), Serafim y Pereira (1983)	E_m	=	7499	MPa
- Kulhawy y Goodman (1980)	E_m	=	7261.8	MPa
- Hoek (1995)	E_m	=	8464	MPa
- Grimstad y Barton (1993)	E_m	=	-	MPa
- Gokceoglu et al. (2003)	E_m	=	2753	MPa
- Hoek y Diederichs (2006)	E_m	=	1937	MPa
Valor asumido	E_m	=	1937	MPa

2.4 Esfuerzos in situ

k =

k =	1.50	En rocas no alterada:	En rocas no alteradas en superficie		
k =	0.25	En medios homogene	En medios homogeneos e isotrópicos en función o		
<i>k</i> =	1.0	Valor asumido	Valor asumido		
Esfuer	zo vertical	$\sigma_{\!\scriptscriptstyle V}$	=	0.03 MPa	
Esfuer	zo horizontal	σ_{h}	=	0.03 MPa	
Esfuer	zo principal mayor	σ ` $_{Imax}$	=	0.03 MPa	
Esfuer	zo principal menor	σ $_{3max}$	=	0.03 MPa	

En rocas fracturadas en superficie

2.5 Carga admisible del macizo rocoso

Capacidad admisible (q_{ad})

Hoek et al. (2002)	q_{ult}	=	129.3 Kg/cm ²
Serrrano y Olalla (2001)	$q_{\it ult}$	=	$\beta(N_{\beta}-\zeta)$
	β	=	10.3 MPa
	5	=	0.002
	$\sigma*_{01}$	=	0.005
	N_{eta}	=	5.3
	q_{ult}	=	54.3 Kg/cm ²
AASHTO (1996)	q_{ult}	=	$N_{ms} * U_{c}$
	N_{ms}	=	0.0907
	U_{c}	=	1274 Kg/cm ²
	q_{ult}	=	115.593 Kg/cm ²
Criterio de comprobación	$q_{\it ad}$	<	0.2 * U _c
	U_{c}	=	1274 Kg/cm ²
	q_{ad}	<	254.8 Kg/cm ²
	q_{ad}	<	0.33 * f'c
	f' c	=	210.0 Kg/cm ²
	q_{ad}	<	69.3 Kg/cm ²

6.0 Parámetros para el diseño en ingeniería

ProgresivaVertice V-02, LINEA AÉREA

Litología: GRANITO

Criterio de resistencia Mohr Coulomb	C'm	=	1.0 Kg/cm ²
	φ' _m	=	70.6 °
Criterio de Falla Generalizado de Hoek-Brown	m_b	=	0.649
	S	=	0.000
	а	=	0.508
Angulo de arrancamiento	λ	=	40.0 °
Parámetros de deformación	E_m	=	1937 MPa
Capacidad de soporte última	q_{ult}	=	54.3 Kg/cm ²
Capacidad admisible del macizo rocoso	q_{ad}	=	18.1 Kg/cm ²
Adherencia con el concreto (Littlejohn y Bruce 1975)	τ	=	21.2 Kg/cm ²

RESISTENCIA Y DEFORMACION DE LOS MACIZOS ROCOSOS

Versión 1.3

Proyecto: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR

40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

Solicitante: EDELNOR Estación: EG-04

Progresiva Vertice V-04, LINEA AÉREA

Litología: GRANITO

1.0 Roca intacta

Peso específico	γ_i	:	0.0296	(MN/m ³)
Resistencia a la compresión uniaxial	$\sigma_{\it ci}$:	143.2	(MPa)
Constante de la roca intacta	m_i	:	33	
Relación modular	MR	:	300	
Cohesión	C_i	:	15	(MPa)
Angulo de fricción interna	ϕ_i	:	68	(°)
Módulo de elasticidad	E_i	:	42960	(MPa)
Relación de Poisson	v_i	:	0.2	

2.0 Macizo Rocoso

Valoración de la masa rocosa, RMR 89 (Bieniawski, 1989)	:	48
Índice Geológico de Resistencia, GSI (Hoek et al., 1995)	:	43
Indice, Q (Barton, 1974)	:	1.6
Espaciamiento de discontinuidades (m)	:	0.16
Factor de perturbación de la roca, D	:	1

2.1 Proyecto de ingeniería

Profundidad de Cimentación Df = 1 m

2.2 Estimación de las propiedades de resistencia

(Ruptura global del macizo)

a) Criterio de resistencia Mohr Coulomb

Bieniawski (1976)	C'm	=	2.4	4 Kg/cm ²
	φ' _m	=	24.	4 °
Con criterio de falla de Hoek-Brown	c' _m	=	0.0	g Kg/cm²
	φ' _m	=	70.	7 °
b) Criterio de Falla Generalizado de Hoek-Brown				
	m_b	=	0.56	3
	S	=	0.0000	7
	а	=	0.5	1
Resistencia a la tracción (σ'_{tm})				
	$\sigma_{\it tm}$	=	-s $\sigma_{\it ci}/m_{\it b}$	
	$\sigma_{\it tm}$	=	-0.2	Kg/cm ²
Resistencia a la compresión del macizo rocoso ($\sigma'_{\it cm}$)				
	σ $_{cm}$	=	$\sigma_{\it ci.}{\it s}^a$	
(Inicio de ruptura)	σ $_{cm}$		11.1	Kg/cm ²

Kg/cm²

134.4

2.3 Estimación de las propiedades de deformación

a) Criterios de deformación de macizos rocosos (Modulo de deformabilidad, E_m)

1.00

- Bieniawski (1978), Serafim y Pereira (1983)	E_m	=	6683	MPa
- Kulhawy y Goodman (1980)	E_m	=	6873.6	MPa
- Hoek (1995)	E_m	=	7998	MPa
- Grimstad y Barton (1993)	E_m	=	-	MPa
- Gokceoglu et al. (2003)	E_m	=	2415	MPa
- Hoek y Diederichs (2006)	E_m	=	1970	MPa
Valor asumido	E_m	=	1970	MPa

2.4 Esfuerzos in situ

k =

<i>k</i> =	1.50	En rocas no alterada:	En rocas no alteradas en superficie		
<i>k</i> =	0.25	En medios homogene	En medios homogeneos e isotrópicos en función de		
k =	1.0	Valor asumido			
Esfuerz	o vertical	σ_{v}	=	0.03 MPa	
Esfuerz	o horizontal	σ_{h}	=	0.03 MPa	
Esfuerz	o principal mayor	$\sigma`_{Imax}$	=	0.03 MPa	
Esfuerz	o principal menor	σ $_{3max}$	=	0.03 MPa	

En rocas fracturadas en superficie

2.5 Carga admisible del macizo rocoso

Capacidad admisible (q_{ad})

Hoek et al. (2002)	q_{ult}	=	134.4 Kg/cm ²
Serrrano y Olalla (2001)	$q_{\it ult}$	=	$\beta(N_{\beta}-\zeta)$
	β	=	10.1 MPa
	5	=	0.002
	$\sigma*_{01}$	=	0.005
	N_{eta}	=	5.2
	q_{ult}	=	52.8 Kg/cm ²
AASHTO (1996)	q_{ult}	=	$N_{ms} * U_{c}$
	N_{ms}	=	0.0782
	U_{c}	=	1432 Kg/cm ²
	$q_{\it ult}$	=	111.979 Kg/cm ²
Criterio de comprobación	$q_{\it ad}$	<	0.2 * U _c
	U_{c}	=	1432 Kg/cm ²
	q_{ad}	<	286.4 Kg/cm ²
	$q_{\it ad}$	<	0.33 * f'c
	f'c	=	210.0 Kg/cm ²
	q_{ad}	<	69.3 Kg/cm ²

6.0 Parámetros para el diseño en ingeniería

ProgresivaVertice V-04, LINEA AÉREA

Litología: GRANITO

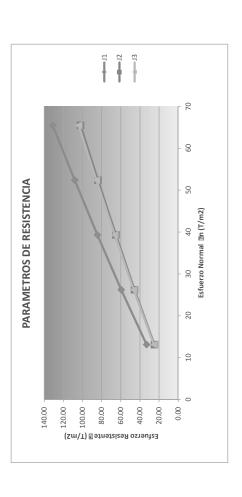
Criterio de resistencia Mohr Coulomb	C'm	=	0.9 Kg/cm ²
	φ' _m	=	70.7 °
Criterio de Falla Generalizado de Hoek-Brown	m_b	=	0.563
	S	=	0.000
	а	=	0.509
Angulo de arrancamiento	λ	=	40.0 °
Parámetros de deformación	E_m	=	1970 MPa
Capacidad de soporte última	q_{ult}	=	52.8 Kg/cm ²
Capacidad admisible del macizo rocoso	q_{ad}	=	17.6 Kg/cm ²
Adherencia con el concreto (Littlejohn y Bruce 1975)	τ	=	23,9 Kg/cm ²

LINEA AÉREA Parámetros de Discontinuidad

PARÁMETROS DE RESISTENCIA DE DISCONTINUIDADES

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR Proyecto:

Solicitante:


EDELNOR BAYOVAR - SAN JUAN DE LURIGANCHO - LIMA EG-02,V-02, LÍNEA AÉREA Ubicación:

Estación:

280527 E, 8678058 N GRANODIORITA Coordenadas UTM:

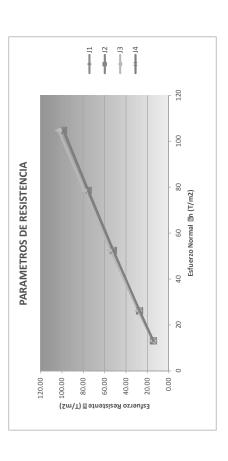
Litología:

	25 m	• ©	60.3	54.3	54.8
	25	c (t/m²)	16.2	11.0	11.3
OUBE	20 m	\$	61.0	55.0	55.4
ON CH	20	c (t/m²)	13.6	9.2	9.4 55.4
A BART	m	ф (0)	61.9	55.8	56.3
CRITERIO DE ROTURA BARTON CHOUBEY	15 m	c (t/m²)	10.9	7.2	7.4
O DE F	u	\$ ©	63.1	57.0	57.5
RITER	10 m	c (t/m²)	8.0	5.2	5.3
0	u	• ©	65.1	59.1	59.6
	5 m	c (t/m²)	8.4	3.0	3.1
	ANGULO DE FRICCION	RESIDUAL (ф)	48.3	43.3	43.3
\vdash	CIA	(MPa)	95.1	65.6	76.9
	RUGOSIDAD	JRCn	7.0	7.0	7.0
	PERSISTENCIA	(m)	10.0	4.0	2.0
	ESPACIADO	(cm)	25.0	20.0	15.0
	DIRECCIÓN DE	BUZAMIENTO	82	164	185
	BITZAMIENTO DIRECCIÓN DE ESPACIADO PERSISTENCIA		\$8	8	73
	DISCONTINUEDAD		JI	J2	13

PARÁMETROS DE RESISTENCIA DE DISCONTINUIDADES

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR EDELNOR VERTICE V-00 Proyecto:

Solicitante:


Ubicación:

Estación:

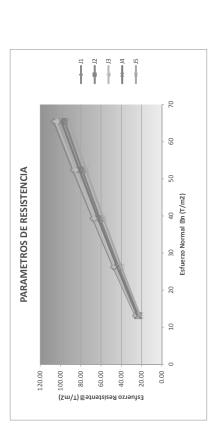
EG-04, V-00 280700 E, 8677801 N Coordenadas UTM:

GRANODIORITA Litología:

						DECICTENCTA	ANCITTODE		S	RITERI	O DE R	OTUR/	CRITERIO DE ROTURA BARTON CHOUBEY	ON CH	OUBEY		
ESPACIADO PERSISTENCIA	ESPACIADO PERSISTENCIA	ESPACIADO PERSISTENCIA		RUG	RUGOSIDAD	KESIS LENCIA JCSn		5 m	u	10 m	n	20 m	ш	30 m	ш	40 m	ш
BUZAMIENTO (cm) (m)	(cm)	(cm)	(m)		JRCn	(MPa)	RESIDUAL (\$)	c (t/m²)	◆ ©	c (t/m²)	◆ ©	c (t/m²)	◆ ©	c (t/m²)	◆ ©	c (t/m²)	◆ ©
85 173 26.0 8.0	26.0		8.0		5.0	50.3	35.0	1.0	45.8	1.9	44.3	3.6	42.8	5.3	42.0	6.9	41.3
30 235 13.0 5.0	13.0		5.0		5.0	72.9	34.0	1.0	45.7	1.9	44.2	3.6	42.7	5.2	41.8	6.9	41.2
50 62 10.0 3.0	10.0		3.0		5.0	100.2	34.7	1.1	47.0	2.0	45.5	3.8	44.0	5.5	43.1	7.2	42.5
65 1.88 4.0 15	4.0		1.5		5.0	111.5	33.0	1.0	45.6	1.9	1.44	3.6	42.6	5.2	41.7	6.8	41.1

PARÁMETROS DE RESISTENCIA DE DISCONTINUIDADES

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR EDELNOR BAYOVAR-SAN JUAN DE LURIGANCHO-LIMA Proyecto:


Solicitante: Ubicación:

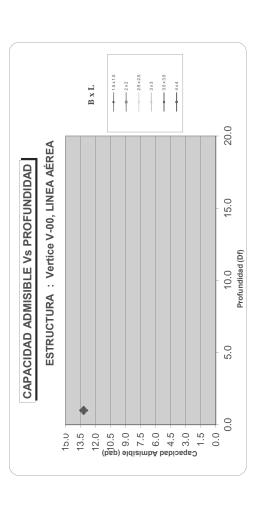
Estación:

EG-01, V-00 280360 E, 8678782 N ANDESITA Coordenadas UTM:

Litología:

	25 m	• ©	55.4	52.6	55.0	53.5	51.8
,	25	c (t/m²)	11.8	10.1	11.5	10.6	8.1
OUBEY	20 m	\$	56.1	53.3	55.6	54.2	52.4
ON CH	20	c (t/m²)	8.6	8.4	9.5	8.8	6.7
A BART	m	\$ (i)	57.0	54.2	56.5	55.0	53.1
ROTUR	15 m	c (t/m²)	7.7	6.6	7.5	6.9	6.9
CRITERIO DE ROTURA BARTON CHOUBEY	m	ф (0)	58.2	55.4	57.7	56.2	54.2
CRITER	10 m	c (t/m²)	5.6	4.7	5.4	4.9	3.7
	ш	\$ ①	60.2	57.5	59.8	58.3	56.0
	5 m	c (t/m²)	3.2	2.7	3.1	2.8	2.0
	ANGULO DE FRICCION	RESIDUAL (\$)	43.7	41.3	44.0	43.0	43.3
	RESISTENCIA ICSn	(MPa)	85.5	72.9	65.6	55.9	45.2
	RUGOSIDAD	JRCn	7.0	7.0	7.0	7.0	6.0
	PERSISTENCIA	(m)	15.0	8.0	4.0	2.0	1.0
	ESPACIADO	(cm)	48.0	24.0	12.0	7.0	9.0
	BLIZAMIENTO DIRECCIÓN DE ESPACIADO	BUZAMIENTO	43	120	06	160	335
	BITZAMIENTO		08	10	08	62	7.0
	DISCONTINUEDAD		J.1	J2	13	14	JS

LINEA AÉREA Capacidad Admisible

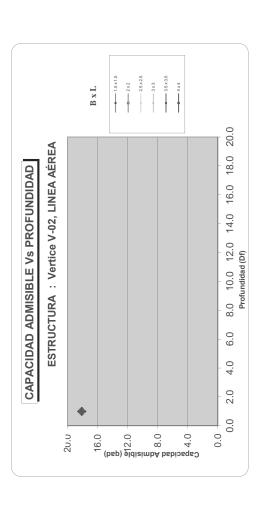

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO ARCHIVO N° : cap admisible.xls REALIZADO : HSA FECHA : 03/10/2016

> SOLICITANTE : EDELNOR UBICACIÓN : Vertice V-00, LINEA AÉREA

ESTRUCTURA: Vertice V-00, LINEA AÉREA

BxL			q _{adm} (kg/cm ²)	g/cm²)					-		,
	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	3.5 x 3.5	4 x 4	γ (g/cm´)	C (Kg/cm²)	(.) ф	E _s (Kg/cm ⁻)	tipo de suelo
	13.2	13.2	13.2	13.2	13.2	13.2	3.06	1.54	66.7	23082	TIPO V

Df= Profundidad de cimentación (medido desde el nivel de piso terminado)


ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO ARCHIVO N°: cap admisible.xls REALIZADO: HSA FECHA: 03/10/2016

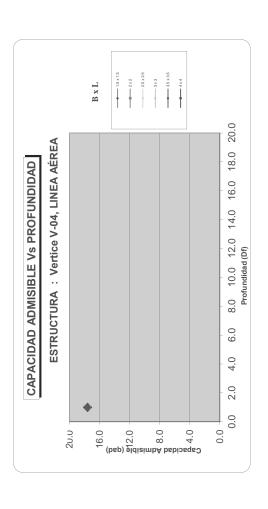
SOLICITANTE : EDELNOR UBICACIÓN : Vertice V-02, LINEA AÉREA

ESTRUCTURA: Vertice V-02, LINEA AÉREA

	ϕ (°) E _s (Kg/cm ⁻) tipo de suelo	70.6 19374 TIPO V
,	C (Kg/cm²)	56:0
	γ (g/cm²)	3.32
	4 x 4	18.1
	3.5 x 3.5	18.1
q _{adm} (kg/cm²)	3 x 3	18.1
q _{adm} (k	2.5 x 2.5	18.1
	2 x 2	18.1
	1.5 x 1.5	18.1
BxL	Df	1.0
	MATERIAL	GRANITO

Df= Profundidad de cimentación (medido desde el nivel de piso terminado)

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


ARCHIVO N°: cap admisible.xls REALIZADO: HSA FECHA: 03/10/2016

SOLICITANTE : EDELNOR UBICACIÓN : Vertice V-04, LINEA AÉREA

ESTRUCTURA: Vertice V-04, LINEA AÉREA

	BxL			q _{adm} (kg/cm²)	g/cm²)			,	,			
MATERIAL	Df	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	3.5 x 3.5	4 x 4	γ (g/cm²)	C (Kg/cm²)	⊕ ♦	E _s (Kg/cm [*])	tipo de suelo
GRANITO	1.0	17.6	17.6	17.6	17.6	17.6	17.6	2.96	0.89	70.7	19698	TIPO V

Df= Profundidad de cimentación (medido desde el nivel de piso terminado)

LINEA SUBTERRÁNEA

Capacidad Admisible

Ver 3.1

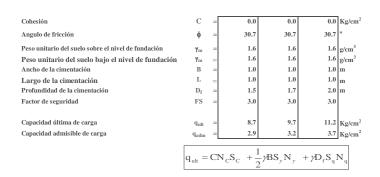
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

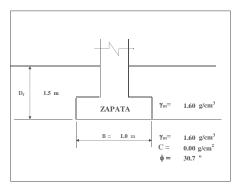
SOLICITANTE: EDELNOR FECHA: 01/09/2016 SECTOR: V-29

Ubicación del Nivel Freático:	NF =	n	ı
-------------------------------	------	---	---

$ m N_{DPL}$		=						
Suelo de cimentación (SUCS)		=	SM	SM	SM	SM	SM	
Tipo Suelo		=	S	S	S	S	S	
Descripción Suelo de Cimentación		=	Arena Limosa con Grava					
Suelo/Roca (S/R)			S	S	S	S	S	
Existe Falla Local /disminución resistencia/No (F/R/N)		=	N	N	N	N	N	
Profundidad de Cimentación	\mathbf{D}_{f}	=	1.5	1.7	2.0	2.5	3.0	m
Cohesión	C	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Cohesión falla local	$C_{\rm f}$	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Angulo de fricción	ф	=	30.7	30.7	30.7	31.9	31.9	0
Angulo de Fricción corregido	ϕ_{f}	=	30.7	30.7	30.7	31.9	31.9	0
Angulo de Arrancamiento	λ	=	21.5	21.5	21.5	22.3	22.3	0
Peso unitario del suelo sobre el nivel de fundación	γ_{m}	=	1.6	1.6	1.6	1.6	1.6	g/cm ³
Peso unitario del suelo bajo el nivel de fundación	γ_{m}	=	1.6	1.6	1.6	1.6	1.6	g/cm ³
Módulo de Elasticidad	\mathbb{E}_{s}	=	320	325	325	349	349	Kg/cm ²
Coeficiente de Balasto	$\mathbf{K}_{\mathrm{v}1}$	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ³
Coeficiente de Rankine para la presión activa	\mathbf{K}_{A}	=	0.32	0.32	0.32	0.31	0.31	
Coeficiente de Rankine para la presión pasiva	\mathbf{K}_{P}	=	3.09	3.09	3.09	3.24	3.24	

PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA

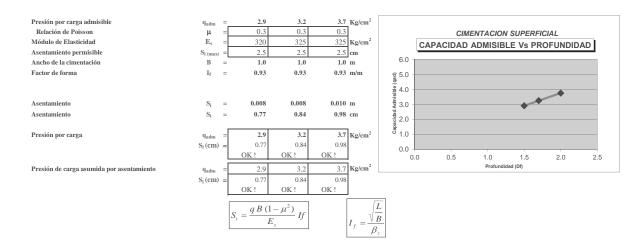

PROYECTO : 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR


UBICACIÓN : V-29 FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



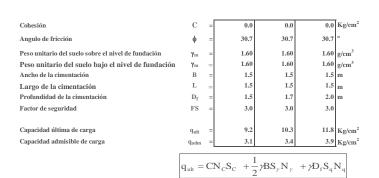
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

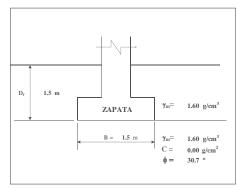
UBICACIÓN : CACLIC-CHACHAPOYAS

FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA

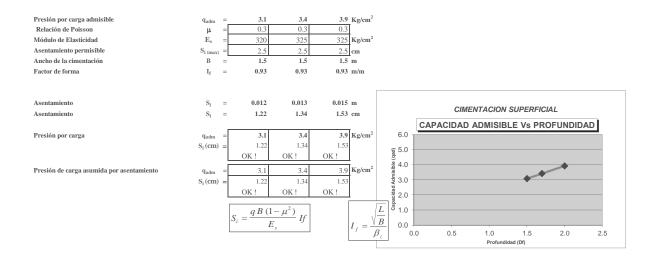

PROYECTO : 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR


UBICACIÓN : V-29 FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



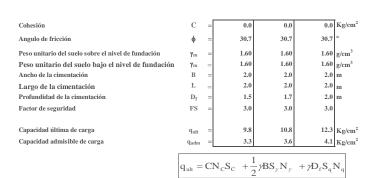
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

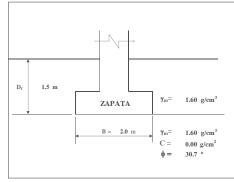
UBICACIÓN : CACLIC-CHACHAPOYAS

FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA

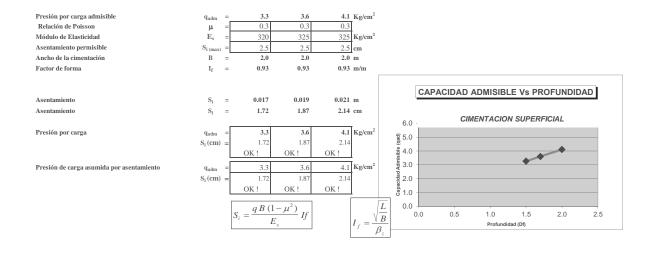

PROYECTO : 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR


UBICACIÓN : V-29 FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



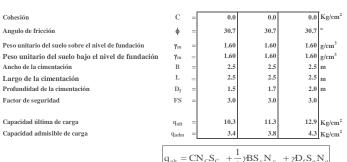
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

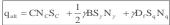
UBICACIÓN : CACLIC-CHACHAPOYAS

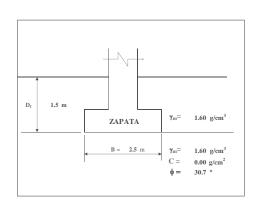
FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA **PROYECTO**

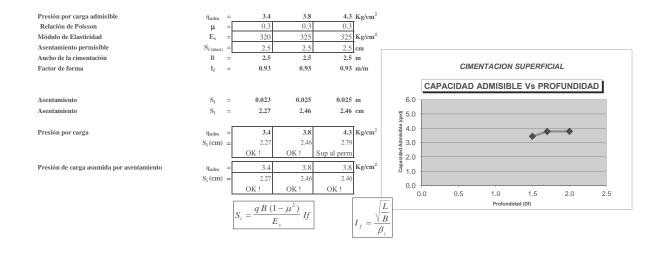

60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR


UBICACIÓN **FECHA** : 01/09/2016


CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial

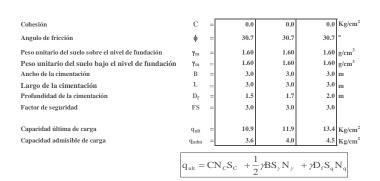


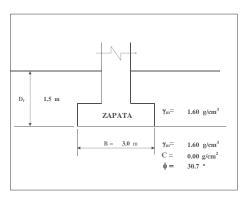
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN : SNC-LAVALIN **FECHA** : 01/09/2016

CIMENTACION SUPERFICIAL

PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA

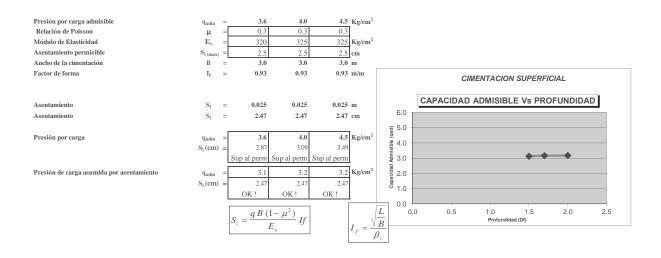

PROYECTO : 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR


UBICACIÓN : V-29 FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial

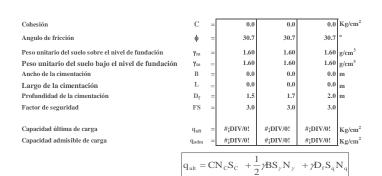


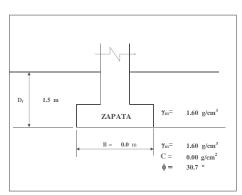
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN : SNC- LAVALIN FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA

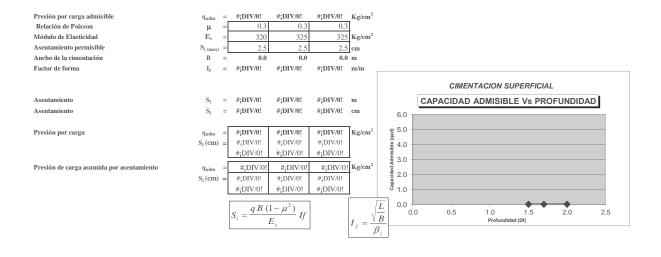

PROYECTO : 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR


UBICACIÓN : V-29 FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN : SNC- LAVALIN FECHA : 01/09/2016

CIMENTACION SUPERFICIAL

RESUMEN DE LAS CAPACIDADES ADMISIBLES CALCULADAS

PROYECTO: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

SOLICITANTE : EDELNOR FECHA : 01/09/2016 SECTOR : V-16 hasta V-25

Cimentación Cuadrada - Cimentación Superficial

MATERIAL	BxL	C.A	APACIDAD AD	MISIBLE: q _{adn}	(kg/cm²)		2	2		
	Df	1 x 1	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	γ (g/cm ³)	C (Kg/cm ²)	ф (°)	λ (°)
Arena Limosa con Grava	1.5	2.90	3.08	3.26	3.44	3.12	1.60	0.00	30.7	21.5
Arena Limosa con Grava	1.7	3.2	3.4	3.6	3.8	3.2	1.60	0.00	30.7	21.5
Arena Limosa con Grava	2.0	3.7	3.9	4.1	3.8	3.2	1.60	0.00	30.7	21.5
Arena Limosa con Grava	2.5	5.4	5.6	5.1	4.0	3.4	1.60	0.00	31.9	22.3
Arena Limosa con Grava	3.0	6.4	6.6	5.1	4.0	3.4	1.60	0.00	31.9	22.3

Df= Profundidad de cimentación (medido desde terreno natural)

SUBESTACIÓN BAYOVAR

Capacidad Admisible

Ver 3.1

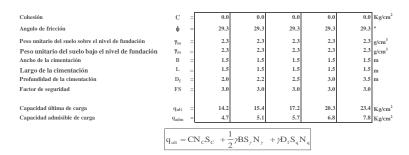
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

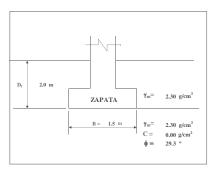
SOLICITANTE: EDELNOR FECHA: 01/09/2016

SECTOR: Subestación Bayovar

Ubicación del Nivel Freático:	NF =	m
-------------------------------	------	---

N _{DPL}		=	30	30	30	30	30	
Suelo de cimentación (SUCS)		=	SM	SM	SM	SM	SM	
Tipo Suelo		=	S	S	S	S	S	
Descripción Suelo de Cimentación		=	Arena Limosa con grava					
Suelo/Roca (S/R)			S	S	S	S	S	
Existe Falla Local /disminución resistencia/No (F/R/N)		=	f	f	f	f	f	
Profundidad de Cimentación	\mathbf{D}_{f}	=	2.0	2.2	2.5	3.0	3.5	m
Cohesión	C	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Cohesión falla local	$C_{\rm f}$	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Angulo de fricción	ф	=	40.0	40.0	40.0	40.0	40.0	0
Angulo de Fricción corregido	$\phi_{\rm f}$	=	29.3	29.3	29.3	29.3	29.3	0
Angulo de Arrancamiento	λ	=	28.0	28.0	28.0	28.0	28.0	0
Peso unitario del suelo sobre el nivel de fundación	$\gamma_{\rm m}$	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Peso unitario del suelo bajo el nivel de fundación	γ_{m}	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Coeficiente de Balasto	$\mathbf{K}_{\mathrm{v}1}$	=	9.7	9.7	9.7	9.7	9.7	Kg/cm ³
Coeficiente de Rankine para la presión activa	\mathbf{K}_{A}	=	0.22	0.22	0.22	0.22	0.22	
Coeficiente de Rankine para la presión pasiva	$\mathbf{K}_{\mathbf{P}}$	=	4.60	4.60	4.60	4.60	4.60	

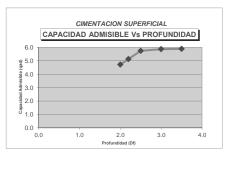

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


: Subestación Bayovar : 01/09/2016 UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Ky Y LINEAS ASOCIADAS - EDELNOR

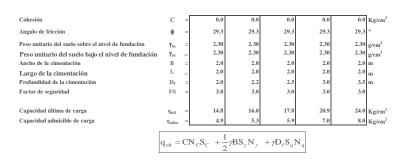
UBICACIÓN : CACLIC-CHACHAPOYAS : 01/09/2016

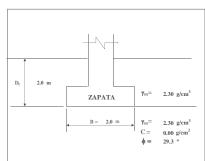
FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	= 4.7	5.1	5.7	6.8	7.8	Kg/cm ²
Relación de Poisson		0.3	0.3	0.3	0.3	0.3	"
Módulo de Elasticidad	\mathbb{E}_{s}	= 300	300	300	300	300	Kg/cm ²
Asentamiento permisible	S _{i (max)}	2.5	2.5	2.5	2.5	2.5	cm
Ancho de la cimentación		= 1.5	1.5	1.5	1.5	1.5	m
Factor de forma	I_f	0.93	0.93	0.93	0.93	0.93	m/m
Asentamiento	S_i	0.020	0.022	0.024	0.025	0.025	m
Asentamiento	S_i	2.00	2.17	2.43	2.48	2.49	cm
Presión por carga	$\mathbf{q}_{\mathrm{adm}}$	4.7	5.1	5.7	6.8	7.8	Kg/cm ²
				0.40		2.20	
	S _i (cm)	2.00	2.17	2.43	2.86	3.29	
	$S_{i}\left(cm\right)$	= 2.00 OK!	2.17 OK!	OK !		Sup al perm	
Presión de carga asumida por asentamiento		1				Sup al perm	Kg/cm ²
Presión de carga asumida por asentamiento		OK!	OK!	OK!	Sup al perm 5.9	Sup al perm 5.9	Kg/cm ²
Presión de carga asumida por asentamiento	q_{adm}	OK!	OK!	OK!	Sup al perm 5.9	Sup al perm 5.9	Kg/cm ²

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

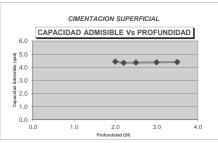

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



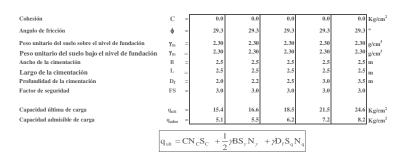
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

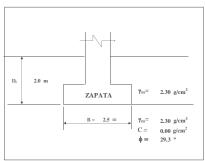
UBICACIÓN FECHA : CACLIC-CHACHAPOYAS : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	4.9	5.3	5.9	7.0	8.0 Kg/cm^2		
Relación de Poisson	μ	=	0.3	0.3	0.3	0.3	0.3		
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300 Kg/cm ²		
Asentamiento permisible	Si (max)	=	2.5	2.5	2.5	2.5	2.5 cm		
Ancho de la cimentación	В	=	2.0	2.0	2.0	2.0	2.0 m		
Factor de forma	I_f	=	0.93	0.93	0.93	0.93	0.93 m/m		
Asentamiento	S_i	=	0.025	0.024	0.025	0.025	0.025 m		
Asentamiento	S_i	=	2.50	2.45	2.45	2.47	2.48 cm		CIMENTACIO
	-								CAPACIDAD ADMISI
Presión por carga	q_{adm}	=	4.9	5.3	5.9	7.0	8.0 Kg/cm ²	6.0 -	
	S _i (cm)	_	2.78	3.01	3.36	3.93	4.51	-50	
		Sup a	ıl perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm	9 5.0 -	
Presión de carga asumida por asentamiento				4.3	4.3		4.4 Kg/cm ²	4.0 - 3.0 - 4.0 - 4.0 - 4.0 - 5.0 - 4.0 - 5.0 - 4.0 - 5.0 -	
Presion de carga asumida por asentamiento	q _{adm}		4.4					i an .	
	S _i (cm)		2.50	2.45	2.45		2.48	¥ 3.0	
		0	K!	OK!	OK!	OK!	OK!	2.0 -	
			- D (1	2\		- Fa	Ē.	g 1.0 -	
		$S_i =$		$\frac{1-\mu^2}{2}$ If			-		
		~,	I	Ξ_s			8	0.0 -	
						β		0	0.0 1.0
									Profu

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

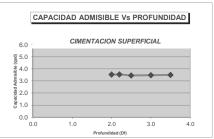

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

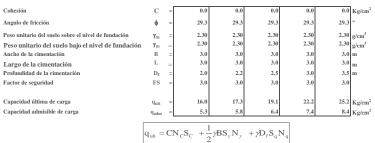
: CACLIC-CHACHAPOYAS : 01/09/2016

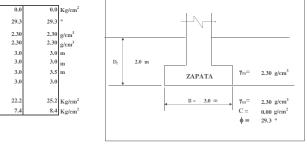
UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible Relación de Poisson Módulo de Elasticidad Asentamiento permisible Ancho de la cimentación Factor de forma	$\begin{array}{c} q_{adm} \\ \mu \\ E_s \\ S_{i \; (max)} \\ B \\ I_f \end{array}$	= = = = = = = = = = = = = = = = = = = =	5.1 0.3 300 2.5 2.5 0.93	300	0.3 300 2.5 2.5	7.2 0.3 300 2.5 2.5	0.3 300 2.5 2.5	Kg/cm ² cm	
Asentamiento Asentamiento	S _i	= =	0.025	0.025 2.50	0.024	0.025 2.45	0.025 2.47	m	C
Presión por carga	q _{adm} S _i (cm)	- 1	5.1 3.62 Sup al perm			7.2 5.06 Sup al perm	5.79		6.0 - (pgb) 91 4.0 -
Presión de carga asumida por asentamiento	$\begin{array}{c} q_{adm} \\ S_i \left(cm \right) \end{array}$	=	S		3.5 2.44 OK!	1 /-		Kg/cm ²	(9tb) 3.0 (9tg)

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

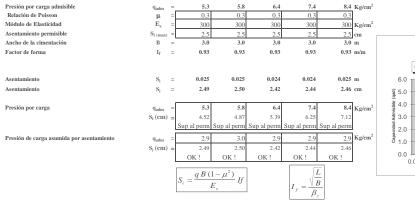

: Subestación Bayovar : 01/09/2016 UBICACIÓN

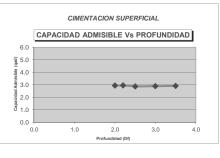

FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial

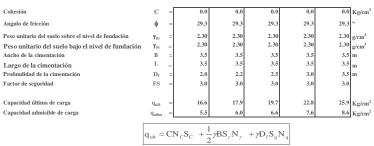


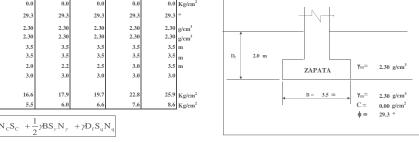


: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

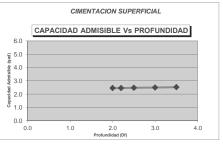

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


UBICACIÓN FECHA : Subestación Bayovar : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



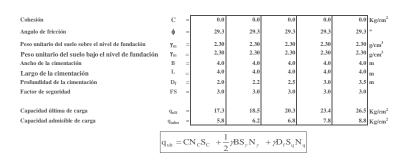
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Ky Y LINEAS ASOCIADAS - EDELNOR PROYECTO

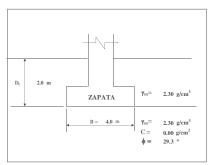
UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	5.5	6.0	6.6	7.6	8.6	Kg/cm ²
Relación de Poisson	μ	=	0.3	0.3	0.3	0.3	0.3	
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Asentamiento permisible	Si (max)	=	2.5	2.5	2.5	2.5	2.5	cm
Ancho de la cimentación	В	=	3.5	3.5	3.5	3.5	3.5	m
Factor de forma	$\mathbf{I_f}$	=	0.93	0.93	0.93	0.93	0.93	m/m
Asentamiento	S_i	=	0.024	0.024	0.024	0.025	0.025	m
Asentamiento	S_i	=	2.42	2.43	2.44	2.46	2.49	cm
Presión por carga	q_{adm}	=	5.5	6.0	6.6	7,6	8.6	Kg/cm ²
	S _i (cm)	_	5.48					
			Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm	
Presión de carga asumida por asentamiento	$\mathbf{q}_{\mathrm{adm}}$	=	2.4	2.5	2.5	2.5	2.5	Kg/cm ²
	S _i (cm)	=	2.42	2.43	2.44	2.46	2.49	
			OK!	OK!	OK!	OK!	OK!	
			$S_i = \frac{q B (q)}{q B (q)}$	$\frac{1-\mu^2}{E_s}$ If			L B	

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

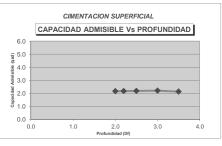

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



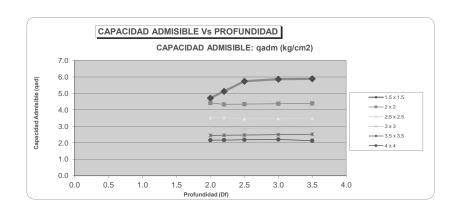
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=_	5.8	6.2	6.8	7.8	8.8	Kg/cm ²		
Relación de Poisson	μ	=[0.3	0.3	0.3	0.3	0.3			
Módulo de Elasticidad	\mathbb{E}_{s}	=L	300	300	300	300	300	Kg/cm ²		
Asentamiento permisible	Si (max)	=[2.5	2.5	2.5	2.5	2.5	cm		
Ancho de la cimentación	В	=	4.0	4.0	4.0	4.0	4.0	m		
Factor de forma	I_f	=	0.93	0.93	0.93	0.93	0.93	m/m		
										CIMENTAC
Asentamiento	S_i	=	0.024	0.024	0.025	0.025	0.024	m		CAPACIDAD ADN
Asentamiento	S_i	=	2.43	2.45	2.46	2.49	2.40	cm	6.0 _T	
		_							⊕ 5.0	
Presión por carga	q_{adm}	=	5.8	6.2	6.8	7.8		Kg/cm ²	e b)	
	S _i (cm)		6.50	6.96		8.81	9.96		울 4.0	
		2	Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm		eg 4.0 -	
Presión de carga asumida por asentamiento	q_{adm}	=[2.2	2.2	2.2	2.2	2.1	Kg/cm ²		
	S _i (cm)	=	2.43	2.45	2.46	2.49	2.40		2.0 -	
			OK!	OK!	OK!	OK!	OK!		تًا 1.0 -	
		_			1				0.0	
				$\frac{1-\mu^2}{E_s}$ If		$I_{\cdot \cdot} = \frac{\sqrt{1}}{2}$			0.0 +	0 1.0
					-	β	z			

RESUMEN DE LAS CAPACIDADES ADMISIBLES CALCULADAS EQUIPOS


PROYECTO: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

SOLICITANTE : EDELNOR
FECHA : 01/09/2016
SECTOR : Subestación Bayovar

Cimentación Cuadrada - Cimentación Superficial

	Officentacion Guadrada - Officentacion Gupernicia													
MATERIAL	BxL		CAPACID	AD ADMISIBLE	≣: q _{adm} (kg/	cm²)		3		1	A (0)			
	Df	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	3.5 x 3.5	4 x 4	γ (g/cm ³)	C (Kg/cm ²)	ф (°)	λ (°)			
Arena Limosa con grava	2.0	4.7	4.4	3.5	2.9	2.4	2.2	2.30	0.00	40.0	28.0			
Arena Limosa con grava	2.2	5.1	4.3	3.5	3.0	2.5	2.2	2.30	0.00	40.0	28.0			
Arena Limosa con grava	2.5	5.7	4.3	3.5	2.9	2.5	2.2	2.30	0.00	40.0	28.0			
Arena Limosa con grava	3.0	5.9	4.4	3.5	2.9	2.5	2.2	2.30	0.00	40.0	28.0			
Arena Limosa con grava	3.5	5.9	4.4	3.5	2.9	2.5	2.1	2.30	0.00	40.0	28.0			

Df= Profundidad de cimentación (medido desde terreno natural)

Ver 3.1

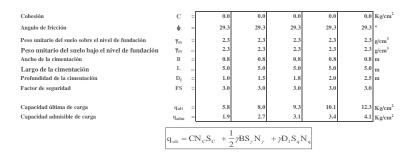
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

SOLICITANTE: EDELNOR FECHA: 01/09/2016

SECTOR: Subestación Bayovar

Ubicación del Nivel Freático:	NF =	m
-------------------------------	-------------	---

N_{DPL}		=	30	30	30	30	30	
Suelo de cimentación (SUCS)		=	SM	SM	SM	SM	SM	
Tipo Suelo		=	S	S	S	S	S	
Descripción Suelo de Cimentación		=	Arena Limosa con grava					
Suelo/Roca (S/R)			S	S	S	S	S	
Existe Falla Local /disminución resistencia/No (F/R/N)		=	f	f	f	f	f	
Profundidad de Cimentación	\mathbf{D}_{f}	=	1.0	1.5	1.8	2.0	2.5	m
Cohesión	C	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Cohesión falla local	$C_{\rm f}$	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Angulo de fricción	ф	=	40.0	40.0	40.0	40.0	40.0	0
Angulo de Fricción corregido	ϕ_{f}	=	29.3	29.3	29.3	29.3	29.3	0
Angulo de Arrancamiento	λ	=	28.0	28.0	28.0	28.0	28.0	0
Peso unitario del suelo sobre el nivel de fundación	γ_{m}	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Peso unitario del suelo bajo el nivel de fundación	γ_{m}	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Módulo de Elasticidad	\mathbf{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Coeficiente de Balasto	$\mathbf{K}_{\mathrm{v}1}$	=	9.7	9.7	9.7	9.7	9.7	Kg/cm ³
Coeficiente de Rankine para la presión activa	\mathbf{K}_{A}	=	0.22	0.22	0.22	0.22	0.22	
Coeficiente de Rankine para la presión pasiva	$\mathbf{K}_{\mathbf{P}}$	=	4.60	4.60	4.60	4.60	4.60	

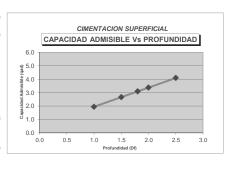

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

: Subestación Bayovar : 01/09/2016 UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Corrida - Cimentación Superficial

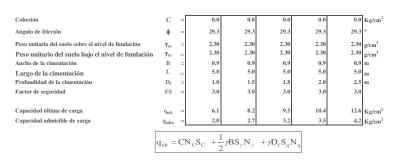

PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Ky Y LINEAS ASOCIADAS - EDELNOR

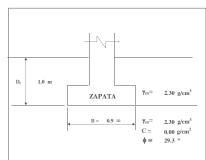
UBICACIÓN : CACLIC-CHACHAPOYAS : 01/09/2016

FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible Relación de Poisson Módulo de Elasticidad Asentamiento permisible Ancho de la cimentación Factor de forma	$\begin{array}{cccc} q_{adm} & = & & \\ \mu & = & & \\ E_s & = & & \\ S_{i\;(max)} & = & & \\ B & = & & \\ I_f & = & & \\ \end{array}$	1.9 0.3 300 2.5 0.8 1.96	2.7 0.3 300 2.5 0.8 1.96	3.1 0.3 300 2.5 0.8 1.96	3.4 0.3 300 2.5 0.8 1.96	4.1 Kg/cm ² 0.3 300 Kg/cm ² 2.5 cm 0.8 m 1.96 m/m
Asentamiento Asentamiento Presión por carga	$S_i = S_i = q_{adm}$	0.009 0.93	0.013 1.27	0.015 1.47	0.016 1.61	0.019 m 1.95 cm
resion por emga	S _i (cm) =	0.93 OK!	1.27 OK!	1.47 OK!	1.61 OK!	1.95 OK!
Presión de carga asumida por asentamiento	q _{adm} = S _i (cm) =	0.93 OK!	2.7 1.27 OK!	3.1 1.47 OK!	3.4 1.61 OK!	4.1 Kg/cm ² 1.95 OK!
		$S_i = \frac{q B (1)}{E}$	$\frac{-\mu^2}{s}$ If		$I_f = \frac{\sqrt{\frac{L}{B}}}{\beta_z}$	-


ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


UBICACIÓN FECHA : Subestación Bayovar : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Corrida - Cimentación Superficial

: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

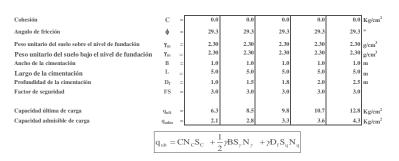
: CACLIC-CHACHAPOYAS : 01/09/2016

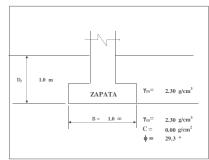
UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible	$q_{adm} =$	2.0	2.7	3.2	3.5	4.2 Kg/cm ²				
Relación de Poisson	μ =	0.3	0.3	0.3	0.3	0.3				
Módulo de Elasticidad	$\mathbb{E}_s =$	300	300	300	300	300 Kg/cm ²				
Asentamiento permisible	$S_{i \text{ (max)}} =$	2.5	2.5	2.5	2.5	2.5 cm				
Ancho de la cimentación	В =	0.9	0.9	0.9	0.9	0.9 m				
Factor de forma	$I_f =$	1.89	1.89	1.89	1.89	1.89 m/m				
						1				_
Asentamiento	S _i =	0.010	0.014	0.016	0.018	0.022 m		_		
Asentamiento	S _i =	1.04	1.42	1.64	1.79	2.16 cm		С	IMENTACION SUF	?EI
	-							CAPACIDA	AD ADMISIBLE	۷s
Presión por carga	q _{adm} =	2.0	2.7	3.2	3.5	4.2 Kg/cm ²	6.0			=
	S _i (cm) =	1.04	1.42	1.64	1.79	2.16	- = 0			
		OK!	OK!	OK!	OK!	OK!	b 5.0 -			
Presión de carga asumida por asentamiento		2.0	2.7	3.2	3.5	4.2 Kg/cm ²	5.0 - 4.0 - 3.0 -			
Presion de carga asumida por asentamiento	q _{adm} =						sim a o -			4
	$S_i(cm) =$	1.04	1.42	1.64	1.79	2.16	¥ 3.0			
	L	OK!	OK!	OK!	OK!	OK!	2.0 -		-	
	1	- D /1	2\		I	a	g 1.0 -			
		$S_i = \frac{q B (1)}{r}$	$\frac{-\mu}{I}$ If		, VB	-				
		E E	, ,		1/ . =		0.0			
					β_z		0.	.0 0.5	1.0 1.5 Profundidad (D	
						Į			Profundidad (D	1)

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

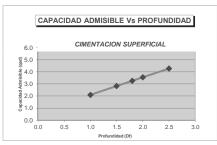

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Corrida - Cimentación Superficial

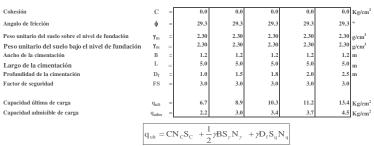

: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

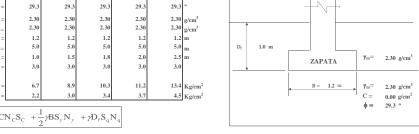
: CACLIC-CHACHAPOYAS : 01/09/2016

UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible	$\mathbf{q}_{\mathrm{adm}}$	= 2.1	2.8	3.3	3.6	4.3 Kg/cm ²		
Relación de Poisson	μ	= 0.3	0.3	0.3	0.3	0.3		
Módulo de Elasticidad	\mathbb{E}_{s}	= 300	300	300	300	300 Kg/cm ²		
Asentamiento permisible	Si (max)	= 2.5	2.5	2.5	2.5	2.5 cm		
Ancho de la cimentación	В	= 1.0	1.0	1.0	1.0	1.0 m		
Factor de forma	I_f	= 1.82	1.82	1.82	1.82	1.82 m/m		
							CA	PACIDA
Asentamiento	S_i	= 0.012	0.016	0.018	0.020	0.024 m		
Asentamiento	S_i	= 1.16	1.56	1.80	1.97	2.37 cm		
							6.0 -	(
Presión por carga	q_{adm}	= 2.1	2.8	3.3	3.6	4.3 Kg/cm ²		
		= 1.16	1.56	1.80	1.97	2.37	g 5.0	
		OK!	OK!	OK!	OK!	OK!	뢽 4.0	
Presión de carga asumida por asentamiento	q_{adm}	= 2.1	2.8	3.3	3.6	4.3 Kg/cm ²	5.0 - 4.0 - 3.0 - 4.0 - 4.0 - 4.0 - 5.0 db acidad Admisible (qad)	
	S; (cm)		1.56	1.80	1.97	2.37	pg 20	
	o _i (cm)	OK!	OK !	OK !	OK!	OK!	1982.0	
		UK!	UK!	UK!	UK!	UK!	ਹੈਂ 1.0	
			$\frac{1-\mu^2}{\Gamma}$ If		$\sqrt{\frac{L}{B}}$		0.0	0.5
			E_s		$I_f = \frac{AB}{\beta_z}$			

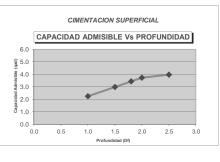

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


UBICACIÓN FECHA : Subestación Bayovar : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Corrida - Cimentación Superficial



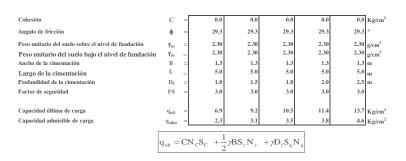
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Ky Y LINEAS ASOCIADAS - EDELNOR PROYECTO

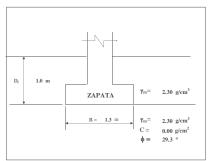
UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q _{adm} =	2.2	3.0	3.4	3.7	4.5	Kg/cm ²
Relación de Poisson	μ =	0.3	0.3	0.3	0.3	0.3	
Módulo de Elasticidad	\mathbb{E}_{s} =	300	300	300	300	300	Kg/cm ²
Asentamiento permisible	S _{i (max)} =	2.5	2.5	2.5	2.5	2.5	cm _
Ancho de la cimentación	В =	1.2	1.2	1.2	1.2	1.2	m
Factor de forma	$I_f =$	1.71	1.71	1.71	1.71	1.71	m/m
Asentamiento	$S_i =$	0.014	0.019	0.021	0.023	0.025	m
Asentamiento	S _i =	1.39	1.85	2.13	2.32	2.47	cm
Presión por carga	q _{adm} =	2.2	3.0	3.4	3.7	4.5	Kg/cm ²
	S_i (cm) =	1.39	1.85	2.13	2.32	2.78	
		OK!	OK!	OK!	OK!	Sup al perm	
Presión de carga asumida por asentamiento	$q_{adm} =$	2.2	3.0	3.4	3.7	4.0	Kg/cm ²
	$S_i(cm) =$	1.39	1.85	2.13	2.32	2.47	
		OK!	OK!	OK!	OK!	OK!	
		$S_i = \frac{q B (1)}{I}$	$\frac{1-\mu^2}{E_s}$ If		$I_f = \frac{\sqrt{\frac{1}{\beta}}}{\beta}$	L B z	

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

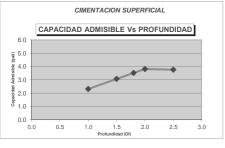

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Corrida - Cimentación Superficial

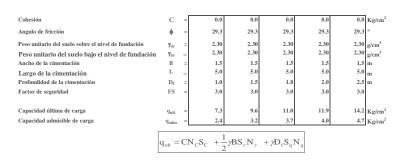


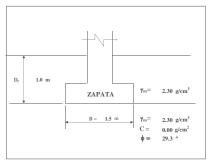
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	$q_{adm} =$	2.3	3.1	3.5	3.8	4.6]	Kg/cm ²			
Relación de Poisson	μ =	0.3	0.3	0.3	0.3	0.3				
Módulo de Elasticidad	\mathbb{E}_{s} =	300	300	300	300	300 1	Kg/cm ²			
Asentamiento permisible	$S_{i \text{ (max)}} =$	2.5	2.5	2.5	2.5	2.5	m			
Ancho de la cimentación	В =	1.3	1.3	1.3	1.3	1.3 1				
Factor de forma	$I_f =$	1.66	1.66	1.66	1.66	1.66 1	n/m			01115
										CIME
Asentamiento	S _i =	0.015	0.020	0.023	0.025	0.025 1	n		CAPAC	IDAD A
Asentamiento	S _i =	1.51	2.00	2.30	2.49	2.46	m	6.0		
	•							= 5.0		
Presión por carga	q _{adm} =	2.3	3.1	3.5	3.8	4.6	Kg/cm ²	5.0 4.0 3.0 2.0 4.0 3.0 3.0		
,	S _i (cm) =		2.00	2.30	2.49		L _H /CIII	울 4.0		
		OK!	OK!	OK!	OK!	Sup al perm		₩ 3.0		
							. , 2	pe de		•
Presión de carga asumida por asentamiento	$q_{adm} =$	2.3	3.1	3.5	3.8		Kg/cm ²	뒃 2.0		·
	$S_i(cm) =$		2.00	2.30	2.49			³ 1.0		
		OK!	OK!	OK!	OK!	OK!				
			2.			L		0.0		
		$S_i = \frac{q B (1)}{r}$	- μ ⁻)		1 /-	- 1			0.0 0.5	1.
		$S_i - E$	Ξ_s ij		$I_f = \frac{\sqrt{I}}{2}$	_				
					β	z				

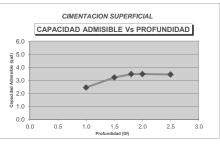

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


UBICACIÓN FECHA : Subestación Bayovar : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Corrida - Cimentación Superficial



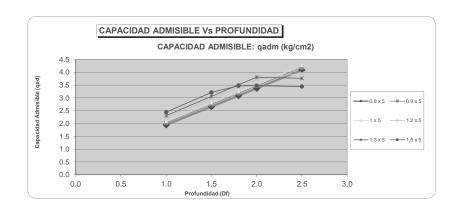
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	$q_{adm} =$	2.4	3.2	3.7	4.0	4.7 Kg/cm ²				
Relación de Poisson	μ =	0.3	0.3	0.3	0.3	0.3				
Módulo de Elasticidad	\mathbb{E}_{s} =	300	300	300	300	300 Kg/cm ²				
Asentamiento permisible	S _{i (max)} =	2.5	2.5	2.5	2.5	2.5 cm				
Ancho de la cimentación	В =	1.5	1.5	1.5	1.5	1.5 m				
Factor de forma	$I_f =$	1.57	1.57	1.57	1.57	1.57 m/m				
									MENTACION	
Asentamiento	$S_i =$	0.017	0.023	0.025	0.025	0.025 m		CAPACID	AD ADMISI	BL
Asentamiento	S _i =	1.75	2.29	2.48	2.48	2.46 cm	6.0 1			
Presión por carga	$q_{adm} = S_i (cm) =$	2.4 1.75 OK!			4.0 2.84 Sup al perm		(peb) equipole (4.0 -			*
Presión de carga asumida por asentamiento	$q_{adm} = S_i(cm) =$	2.4 1.75 OK!	3.2 2.29 OK!	3.5 2.48 OK!	3.5 2.48 OK!	3.4 Kg/cm ² 2.46 OK!	2.0 - 2 1.0 -			
		$S_i = \frac{q B (1)}{E}$	$\frac{-\mu^2}{s}$ If		$I_f = \frac{\sqrt{\frac{I}{I}}}{\beta_z}$	3	0.0	0 0.5	1.0 Profur	1.5 ndida

RESUMEN DE LAS CAPACIDADES ADMISIBLES CALCULADAS ESTRUCTURAS LIVIANAS


PROYECTO: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

SOLICITANTE : EDELNOR
FECHA : 01/09/2016
SECTOR : Subestación Bayovar

Cimentación Corrida - Cimentación Superficial

	Officiación Corrida - Officiación Capernola										
MATERIAL	BxL		CAPACID	3	,						
	Df	0.8 x 5	0.9 x 5	1 x 5	1.2 x 5	1.3 x 5	1.5 x 5	γ (g/cm ³)	C (Kg/cm ²)	ф (°)	λ (°)
Arena Limosa con grava	1.0	1.9	2.0	2.1	2.2	2.3	2.4	2.30	0.00	40.0	28.0
Arena Limosa con grava	1.5	2.7	2.7	2.8	3.0	3.1	3.2	2.30	0.00	40.0	28.0
Arena Limosa con grava	1.8	3.1	3.2	3.3	3.4	3.5	3.5	2.30	0.00	40.0	28.0
Arena Limosa con grava	2.0	3.4	3.5	3.6	3.7	3.8	3.5	2.30	0.00	40.0	28.0
Arena Limosa con grava	2.5	4.1	4.2	4.3	4.0	3.8	3.4	2.30	0.00	40.0	28.0

Df= Profundidad de cimentación (medido desde terreno natural)

Ver 3.1

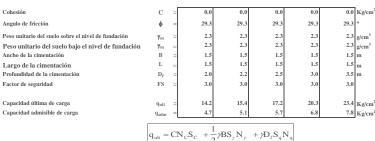
PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

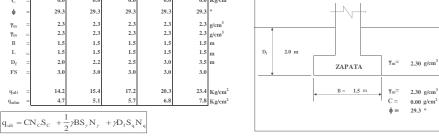
SOLICITANTE: EDELNOR FECHA: 01/09/2016

SECTOR: Subestación Bayovar

Ubicación del Nivel Freático:	NF =	m
-------------------------------	------	---

$N_{ m DPL}$		=	30	30	30	30	30	
Suelo de cimentación (SUCS)		=	SM	SM	SM	SM	SM	
Tipo Suelo		=	S	S	S	S	S	
Descripción Suelo de Cimentación		=	Arena Limosa con grava					
Suelo/Roca (S/R)			S	S	S	S	S	
Existe Falla Local /disminución resistencia/No (F/R/N)		=	f	f	f	f	f	
Profundidad de Cimentación	\mathbf{D}_{f}	=	2.0	2.2	2.5	3.0	3.5	m
Cohesión	C	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Cohesión falla local	\mathbb{C}_{f}	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Angulo de fricción	ф	=	40.0	40.0	40.0	40.0	40.0	0
Angulo de Fricción corregido	ϕ_{f}	=	29.3	29.3	29.3	29.3	29.3	0
Angulo de Arrancamiento	λ	=	28.0	28.0	28.0	28.0	28.0	0
Peso unitario del suelo sobre el nivel de fundación	γ_{m}	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Peso unitario del suelo bajo el nivel de fundación	γ_{m}	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Módulo de Elasticidad	\mathbf{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Coeficiente de Balasto	$\mathbf{K}_{\mathrm{v}1}$	=	9.7	9.7	9.7	9.7	9.7	Kg/cm ³
Coeficiente de Rankine para la presión activa	\mathbf{K}_{A}	=	0.22	0.22	0.22	0.22	0.22	
Coeficiente de Rankine para la presión pasiva	$\mathbf{K}_{\mathbf{P}}$	=	4.60	4.60	4.60	4.60	4.60	

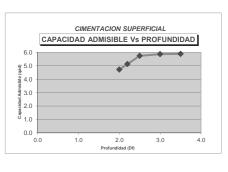

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


: Subestación Bayovar : 01/09/2016 UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Ky Y LINEAS ASOCIADAS - EDELNOR

UBICACIÓN : CACLIC-CHACHAPOYAS : 01/09/2016

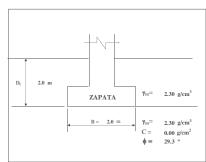
FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible Relación de Poisson Módulo de Elasticidad Asentamiento permisible Ancho de la cimentación	$q_{adm} = $ $\mu = $ $E_s = $ $S_{i (max)} = $ $B = $	4.7 0.3 300 2.5 1.5	5.1 0.3 300 2.5 1.5	5.7 0.3 300 2.5	6.8 0.3 300 2.5	7.8 Kg/cm ² 0.3 300 Kg/cm ² cm 1.5 m
Factor de forma	$I_f =$	0.93	0.93	0.93	0.93	0.93 m/m
Asentamiento Asentamiento	$S_i = S_i = S_i$	0.020 2.00	0.022 2.17	0.024 2.43	0.025 2.48	0.025 m 2.49 cm
Presión por carga	$q_{adm} = S_i(cm) =$	4.7 2.00 OK!	5.1 2.17 OK!	5.7 2.43 OK!	6.8 2.86 Sup al perm	7.8 3.29 Sup al perm
Presión de carga asumida por asentamiento	$q_{adm} = S_i(cm) =$	4.7 2.00 OK!	5.1 2.17 OK!	5.7 2.43 OK!	5.9 2.48 OK!	5.9 Kg/cm ² 2.49 OK!
		$S_i = \frac{q B (1)}{E}$	$\frac{-\mu^2}{s}$ If		$I_f = \frac{\sqrt{\frac{L}{B}}}{\beta_z}$	<u> </u>

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

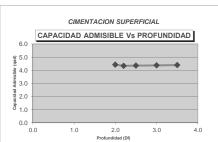
: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

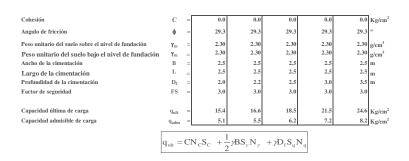
: CACLIC-CHACHAPOYAS : 01/09/2016

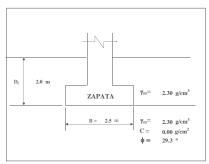
UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	4.9	5.3	5.9	7.0	8.0	Kg/cm ²			
Relación de Poisson	μ	=[0.3	0.3	0.3	0.3	0.3]			
Módulo de Elasticidad	\mathbb{E}_{s}	=[300	300	300	300	300	Kg/cm ²			
Asentamiento permisible	Si (max)	=[2.5	2.5	2.5	2.5	2.5	cm			
Ancho de la cimentación	В	=	2.0	2.0	2.0	2.0	2.0	m			
Factor de forma	I_f	=	0.93	0.93	0.93	0.93	0.93	m/m			
Asentamiento	S_i	=	0.025	0.024	0.025	0.025	0.025	m			
Asentamiento	S_i	=	2.50	2.45	2.45	2.47	2.48	cm		CIMEN	TACI
										CAPACIDAD AL	OMIS
Presión por carga	q_{adm}	=[4.9	5.3	5.9	7.0	8.0	Kg/cm ²	6.0 -		_
	S _i (cm)	_	2.78	3.01	3.36	3.93					
				Sup al perm					4.0 - 4.0 - 4.0 - 4.0 - 5.0 -		
		ř						-	울 4.0 -		
Presión de carga asumida por asentamiento	q_{adm}	=	4.4	4.3	4.3	4.4		Kg/cm ²	is o		
	S _i (cm)	=	2.50	2.45	2.45	2.47	2.48		§ 3.0 -		
		L	OK!	OK!	OK!	OK!	OK!]	불 2.0 -		
		- 1	n /	1 2			L		2.0 -		
				$\frac{1-\mu^2}{If}$./-	-		- 1.0 -		
			i .	E_s			В		0.0 -		
						β	z		0	.0 1.0	
											Pro

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


: Subestación Bayovar : 01/09/2016 UBICACIÓN

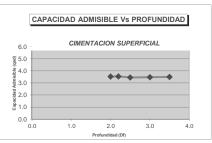

FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial

: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

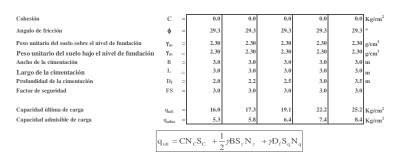

: CACLIC-CHACHAPOYAS : 01/09/2016

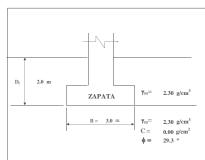
UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR ASENTAMIENTO

Presión por carga admisible	q _{adm}	5.1	5.5	6.2	7.2	8.2	Kg/cm ²		
Relación de Poisson	μ :	0.3	0.3	0.3	0.3	0.3			
Módulo de Elasticidad	\mathbb{E}_{s}	300	300	300	300	300	Kg/cm ²		
Asentamiento permisible	S _{i (max)}	2.5	2.5	2.5	2.5	2.5	cm		
Ancho de la cimentación	В :	2.5	2.5	2.5	2.5	2.5	m		
Factor de forma	I_f	0.93	0.93	0.93	0.93	0.93	m/m		
		0.025	0.025	0.024	0.025	0.025		C	CAPACIDAD ADMI
Asentamiento	S _i		0.025	0.024	0.025			_	
Asentamiento	S _i	2.49	2.50	2.44	2.45	2.47	cm		CIMENTA
							i	6.0	CINENTA
Presión por carga	q _{adm}	5.1	5.5	6.2	7.2		Kg/cm ²	₹5.0	
	S _i (cm) =	3.62	3.91	4.34	5.06	5.79		8	
		Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm		g 4.0	
Presión de carga asumida por asentamiento	q _{adm} =	3.5	3.5	3.5	3.5	3.5	Kg/cm ²	(p 5.0 — 9 4.0 — 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	S _i (cm) =	2.49	2.50	2.44	2.45	2.47		夏 2.0	
		OK!	OK!	OK!	OK!	OK!		pp 2.0 —	
		$S_i = \frac{q B}{}$	$\frac{1-\mu^2}{E_s}$ If		1 /-	L B		0.0) 1.0

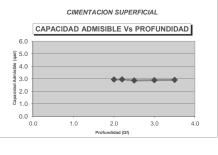

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


UBICACIÓN FECHA : Subestación Bayovar : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



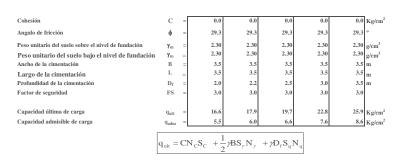
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

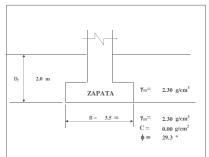
UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	5.3	5.8	6.4	7.4	8.4	Kg/cm ²
Relación de Poisson	μ	=	0.3	0.3	0.3	0.3	0.3	
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Asentamiento permisible	Si (max)	, =	2.5	2.5	2.5	2.5	2.5	cm _
Ancho de la cimentación	В	=	3.0	3.0	3.0	3.0	3.0	m
Factor de forma	$\mathbf{I_f}$	=	0.93	0.93	0.93	0.93	0.93	m/m
Asentamiento	S_i	=	0.025	0.025	0.024	0.024	0.025	m
Asentamiento	S_i	=	2.49	2.50	2.42	2.44	2.46	cm
Presión por carga	q_{adm}	_	5.3	5.8	6.4	7.4	8.4	Kg/cm ²
pg	S _i (cm)) _	4.52	4.87	5.39			
						Sup al perm		
Presión de carga asumida por asentamiento	$\mathbf{q}_{\mathrm{adm}}$	=	2.9	3.0	2.9	2.9	2.9	Kg/cm ²
	S _i (cm)) =	2.49	2.50	2.42	2.44	2.46	
			OK!	OK!	OK!	OK!	OK!	
			$S_i = \frac{q B (q)}{q B (q)}$	$\frac{1-\mu^2}{E_s}$ If		1 /-	L B	

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

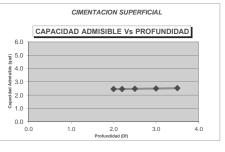

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial

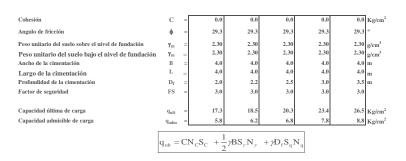


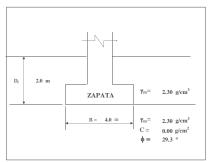
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	5.5	6.0	6.6	7.6	8.6	Kg/cm ²
Relación de Poisson	μ	=	0.3	0.3	0.3	0.3	0.3]
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Asentamiento permisible	Si (max)	=	2.5	2.5	2.5	2.5	2.5	cm
Ancho de la cimentación	В	=	3.5	3.5	3.5	3.5	3.5	m
Factor de forma	I_f	=	0.93	0.93	0.93	0.93	0.93	m/m
Asentamiento	S_i	=	0.024	0.024	0.024	0.025	0.025	m
Asentamiento	S_i	=	2.42	2.43	2.44	2.46	2.49	cm
Presión por carga	q_{adm}	=	5.5	6.0	6.6	7.6	8.6	Kg/cm ²
	Si (cm)	=	5.48	5.88	6.49	7.50	8.51	
			Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm]
Presión de carga asumida por asentamiento	$\mathbf{q}_{\mathrm{adm}}$	=	2.4	2.5	2.5	2.5	2.5	Kg/cm ²
	Si (cm)	=	2.42	2.43	2.44	2.46	2.49	
			OK!	OK!	OK!	OK!	OK!	
			$S_i = \frac{q B (q)}{q B (q)}$	$\frac{1-\mu^2}{E_s}$ If		./-	L B	

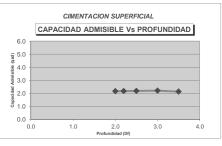

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


UBICACIÓN FECHA : Subestación Bayovar : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR ASENTAMIENTO

Presión por carga admisible	q _{adm} =	5.8	6.2	6.8	7.8	8.8	Kg/cm ²			
Relación de Poisson	μ =	0.3	0.3	0.3	0.3	0.3				
Módulo de Elasticidad	\mathbb{E}_{s} =	300	300	300	300	300	Kg/cm ²			
Asentamiento permisible	S _{i (max)} =	2.5	2.5	2.5	2.5	2.5	cm			
Ancho de la cimentación	В =	4.0	4.0	4.0	4.0	4.0	m			
Factor de forma	$I_f =$	0.93	0.93	0.93	0.93	0.93	m/m			
									CIMEN	ITACION SUPERF
Asentamiento	S _i =	0.024	0.024	0.025	0.025	0.024	m		CAPACIDAD	ADMISIBLE Vs
Asentamiento	S _i =	2.43	2.45	2.46	2.49	2.40	cm	6.0 π		
								0.0		
Presión por carga	q _{adm} =	5.8	6.2	6.8	7.8	8.8	Kg/cm ²	(g 5.0		
	S _i (cm) =	6.50	6.96	7.65	8.81	9.96		용 용 4.0		
		Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm		<u> </u>		
Presión de carga asumida por asentamiento	q _{odm} =	2.2	2.2	2.2	2.2	2.1	Kg/cm ²			
r resion de carga asumida por asentamiento	Addin						4	2.0 -		++
	S_i (cm) =	1	2.45					ade.		
		OK!	OK!	OK!	OK!	OK!	l	ت 1.0 -		
		$S_i = \frac{q B (}{}$	$\frac{1-\mu^2}{E_s}$ If			L B z		0.0 4	0 1.0	2.0 Profundidad (Df)

Ver 3.1

PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

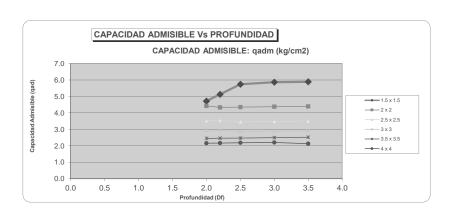
SOLICITANTE: EDELNOR FECHA: 01/09/2016

SECTOR: Subestación Bayovar

Ubicación del Nivel Freático:	NF =	m
Ubicación del Nivei Freatico:		m

$N_{ m DPL}$		_	30	30	30	30	30	
Suelo de cimentación (SUCS)		=	GP-GM	GP-GM	GP-GM	GP-GM	GP-GM	
Tipo Suelo		=	G	G	G	G	G	
Descripción Suelo de Cimentación		=	Arena Limosa con grava					
Suelo/Roca (S/R)			S	S	S	S	S	
Existe Falla Local /disminución resistencia/No (F/R/N)		=	f	f	f	f	f	
Profundidad de Cimentación	\mathbf{D}_{f}	=	1.0	1.2	1.5	1.8	2.0	m
Cohesión	C	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Cohesión falla local	$C_{\rm f}$	=	0.0	0.0	0.0	0.0	0.0	Kg/cm ²
Angulo de fricción	ф	=	40.0	40.0	40.0	40.0	40.0	0
Angulo de Fricción corregido	$\phi_{\rm f}$	=	29.3	29.3	29.3	29.3	29.3	0
Angulo de Arrancamiento	λ	=	28.0	28.0	28.0	28.0	28.0	0
Peso unitario del suelo sobre el nivel de fundación	γ_{m}	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Peso unitario del suelo bajo el nivel de fundación	γ_{m}	=	2.3	2.3	2.3	2.3	2.3	g/cm ³
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Coeficiente de Balasto	$\mathbf{K}_{\mathrm{v}1}$	=	9.7	9.7	9.7	9.7	9.7	Kg/cm ³
Coeficiente de Rankine para la presión activa	\mathbf{K}_{A}	=	0.22	0.22	0.22	0.22	0.22	
Coeficiente de Rankine para la presión pasiva	$\mathbf{K}_{\mathbf{P}}$	=	4.60	4.60	4.60	4.60	4.60	

RESUMEN DE LAS CAPACIDADES ADMISIBLES CALCULADAS PORTICOS

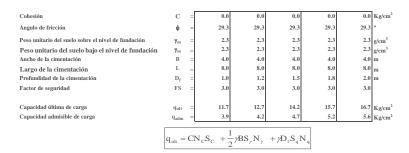

PROYECTO: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

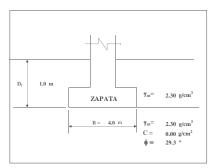
SOLICITANTE : EDELNOR
FECHA : 01/09/2016
SECTOR : Subestación Bayovar

Cimentación Cuadrada - Cimentación Superficial

MATERIAL	BxL		CAPACID	AD ADMISIBLE	≣: q _{adm} (kg/	cm²)		3		1	A (0)
	Df	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	3.5 x 3.5	4 x 4	γ (g/cm ³)	C (Kg/cm ²)	ф (°)	λ (°)
Arena Limosa con grava	2.0	4.7	4.4	3.5	2.9	2.4	2.2	2.30	0.00	40.0	28.0
Arena Limosa con grava	2.2	5.1	4.3	3.5	3.0	2.5	2.2	2.30	0.00	40.0	28.0
Arena Limosa con grava	2.5	5.7	4.3	3.5	2.9	2.5	2.2	2.30	0.00	40.0	28.0
Arena Limosa con grava	3.0	5.9	4.4	3.5	2.9	2.5	2.2	2.30	0.00	40.0	28.0
Arena Limosa con grava	3.5	5.9	4.4	3.5	2.9	2.5	2.1	2.30	0.00	40.0	28.0

Df= Profundidad de cimentación (medido desde terreno natural)

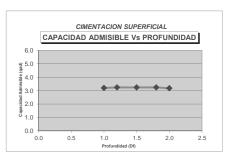

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


: Subestación Bayovar : 01/09/2016 UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


PROYECTO : ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Ky Y LINEAS ASOCIADAS - EDELNOR

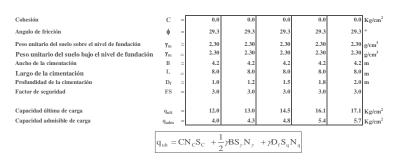
UBICACIÓN : CACLIC-CHACHAPOYAS : 01/09/2016

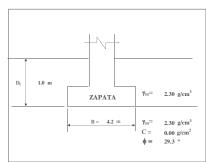
FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	3.9	4.2	4.7	5.2	5.6	Kg/cm ²
Relación de Poisson	μ	=[0.3	0.3	0.3	0.3	0.3	"
Módulo de Elasticidad	\mathbb{E}_{s}	=[300	300	300	300	300	Kg/cm ²
Asentamiento permisible	S _{i (max)}	=[5.0	5.0	5.0	5.0	5.0	cm
Ancho de la cimentación	В	=	4.0	4.0	4.0	4.0	4.0	m
Factor de forma	I_f	=	1.27	1.27	1.27	1.27	1.27	m/m
Asentamiento	S_i	=	0.049	0.050	0.050	0.050	0.049	m
Asentamiento	S_i	=	4.93	4.98	4.99	5.00	4.90	cm
Presión por carga	q_{adm}	=	3.9	4.2	4.7	5.2	5.6	Kg/cm ²
Presión por carga	G ()	=	3.9 6.01		ı			Kg/cm ²
Presión por carga		- 1	6.01	6.53	ı	8.08	8.60	
	S_i (cm)	Į	6.01 Sup al perm	6.53 Sup al perm	7.30 Sup al perm	8.08 Sup al perm	8.60 Sup al perm	
Presión por carga Presión de carga asumida por asentamiento	S _i (cm)	=[6.01 Sup al perm 3.2	6.53 Sup al perm 3.2	7.30 Sup al perm 3.2	8.08 Sup al perm 3.2	Sup al perm 3.2	Kg/cm ²
	S_i (cm)	=[6.01 Sup al perm 3.2 4.93	6.53 Sup al perm 3.2 4.98	7.30 Sup al perm 3.2 4.99	8.08 Sup al perm 3.2 5.00	8.60 Sup al perm 3.2 4.90	Kg/cm ²
	S _i (cm)	=	6.01 Sup al perm 3.2	6.53 Sup al perm 3.2 4.98 OK!	7.30 Sup al perm 3.2	8.08 Sup al perm 3.2	Sup al perm 3.2	Kg/cm ²

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

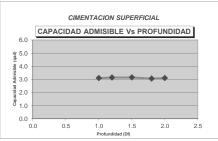

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

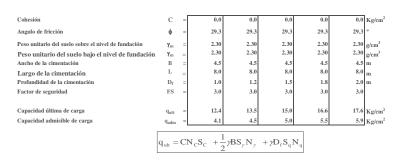
: CACLIC-CHACHAPOYAS : 01/09/2016

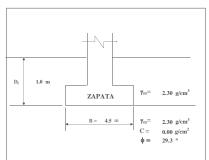
UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	= 4.0	4.3	4.8	5.4	5.7 Kg/cm	t		
Relación de Poisson	μ	= 0.3	0.3	0.3	0.3	0.3			
Módulo de Elasticidad	\mathbb{E}_{s}	= 300	300	300	300	300 Kg/cm ²	5		
Asentamiento permisible	S _{i (max)}	= 5.0	5.0	5.0	5.0	5.0 cm			
Ancho de la cimentación	В	= 4.2	4.2	4.2	4.2	4.2 m			
Factor de forma	I_f	= 1.24	1.24	1.24	1.24	1.24 m/m			
Asentamiento	Si	= 0.049	0.050	0.050	0.048	0.049 m			
Asentamiento	Si	= 4.91	4.97	4.99	4.84	4.90 cm		CIM	ENTACION
	-1							CAPACIDAD	ADMISIB
Presión por carga	q _{adm}	= 4.0	4.3	4.8	5.4	5.7 Kg/cm	6.0 -		
*	S _i (cm)	= 6.34		7.68	8.49	9.02			
			Sup al perm				(5 5.0 - 12 squisium 4.0 - 12		
							, 음 4.0 -		
Presión de carga asumida por asentamie	A11.1111	= 3.1	3.1	3.1	3.1	3.1 Kg/cm ²	E		
	S _i (cm) :	= 4.91	4.97	4.99	4.84	4.90	₹ 3.0 -		
		OK!	OK!	OK!	OK!	OK!	홍 2.0 -		
		_	2.			L	2.0 -		
		$S_i = \frac{q B}{}$	$(1-\mu^2)$./-	-	⁶ 1.0 -		
		D_i —	E_s		$I_c = \frac{\sqrt{I}}{I}$	_	0.0 -		
					β	z	0	.0 0.5	1.0
									Profundi

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

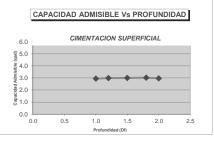

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial

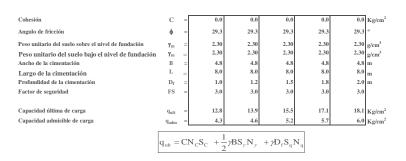

: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

: CACLIC-CHACHAPOYAS : 01/09/2016

UBICACIÓN FECHA

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	4.1	4.5	5.0	5.5	5.9	Kg/cm ²			
Relación de Poisson	μ	=[0.3	0.3	0.3	0.3	0.3				
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²			
Asentamiento permisible	Si (max)	=[5.0	5.0	5.0	5.0	5.0	cm			
Ancho de la cimentación	В	=	4.5	4.5	4.5	4.5	4.5	m			
Factor de forma	I_f	=	1.21	1.21	1.21	1.21	1.21	m/m			
									į į	CAPAC	CIDAD
Asentamiento	S_i	=	0.048	0.049	0.050	0.050	0.049	m	ļ <u>"</u>		
Asentamiento	S_i	=	4.85	4.92	4.95	4.98	4.89	cm			
									6.0 -		CII
Presión por carga	q_{adm}	=[4.1	4.5	5.0	5.5	5.9	Kg/cm ²			
	Si (cm)	=	6.83	7.39	8.25	9.10	9.67		§ 5.0		
			Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm		울 4.0 -		
Presión de carga asumida por asentamiento	q_{adm}	=[2.9	3.0	3.0	3.0	3.0	Kg/cm ²	(pg) 5.0 - 4		
resion de cuiga asamua por asemannemo	S _i (cm)	- 1	4.85	4.92					P 2.0		
	S _i (CIII)	=	OK!	OK!	OK!	OK!	OK!		2.0 -		
		L	UK:	UK:	UK:	UK:	UK:	ı	ਤੌਂ 1.0 -		
			a R ($(1-\mu^2)$	1		L		0.0		
			S =	/t		. √	B		0.	.0	0.5
				E_s		$I_f = \frac{1}{\beta}$					
						ρ	z				

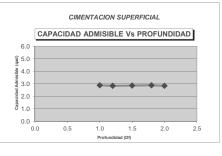

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

UBICACIÓN FECHA : Subestación Bayovar : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



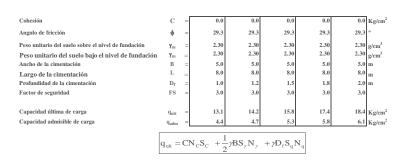
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

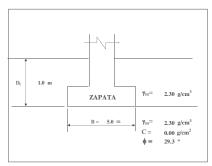
UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	4.3	4.6	5.2	5.7	6.0	Kg/cm ²
Relación de Poisson	μ	=	0.3	0.3	0.3	0.3	0.3	
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²
Asentamiento permisible	Si (max)	=	5.0	5.0	5.0	5.0	5.0	cm _
Ancho de la cimentación	В	=	4.8	4.8	4.8	4.8	4.8	
Factor de forma	$\mathbf{I_f}$	=	1.17	1.17	1.17	1.17	1.17	m/m
Asentamiento	S_i	=	0.049	0.048	0.049	0.049	0.048	m
Asentamiento	S_i	=	4.92	4.84	4.88	4.93	4.84	cm
Presión por carga	q_{adm}	=1	4.3	4.6	5.2	5.7	6.0	Kg/cm ²
• •	S _i (cm)	_	7.31	7.91	8.81	9.71		
						Sup al perm		
Presión de carga asumida por asentamiento	$\mathbf{q}_{\mathrm{adm}}$	=	2.9	2.8	2.9	2.9	2.8	Kg/cm ²
	Si (cm)	=	4.92	4.84	4.88	4.93	4.84	
			OK!	OK!	OK!	OK!	OK!	
			$S_i = \frac{q B (q)}{q B (q)}$	$\frac{1-\mu^2}{E_s}$ If		$I_f = \frac{\sqrt{\frac{1}{\beta}}}{\beta}$	L B	

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

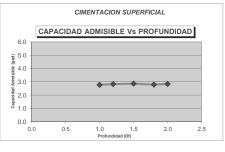

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial



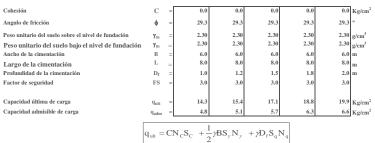
: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

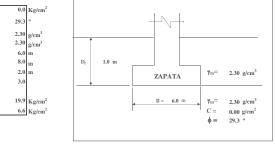
UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

Presión por carga admisible	q_{adm}	=	4.4	4.7	5.3	5.8	6.1	Kg/cm ²		
Relación de Poisson	μ	=	0.3	0.3	0.3	0.3	0.3]		
Módulo de Elasticidad	\mathbb{E}_{s}	=	300	300	300	300	300	Kg/cm ²		
Asentamiento permisible	Si (max)	=	5.0	5.0	5.0	5.0	5.0	cm		
Ancho de la cimentación	В	=	5.0	5.0	5.0	5.0	5.0	m		
Factor de forma	I_f	=	1.15	1.15	1.15	1.15	1.15	m/m		
										0.4
Asentamiento	S_i	=	0.048	0.049	0.050	0.049	0.050	m		C/
Asentamiento	S_i	=	4.84	4.94	4.99	4.87	4.96	cm	6.0 -	
									⊕ 5.0 -	
Presión por carga	q_{adm}	=	4.4	4.7	5.3	5.8	6.1	Kg/cm ²	e b)	
	S _i (cm)	=	7.64	8.26	9.18	10.11	10.73		울 4.0 -	
			Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm		₹ 3.0 -	
Presión de carga asumida por asentamiento			2.0	2.0	2.9	2.8	2.0	Kg/cm ²	per -	
Presion de carga asumida por asentamiento	q _{adm}	=	2.8	2.8				-	Pp 2.0 -	
	S _i (cm)	=		4.94			4.96		³ 1.0 -	
			OK!	OK!	OK!	OK!	OK!	J		
			- D (12\	1		L		0.0	.0
			V	$\frac{1-\mu^2}{I}$ If		./-	B		"	.0
			1	E_s		1/. = -	_			
					-	β	z			

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

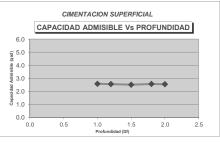

: Subestación Bayovar : 01/09/2016 UBICACIÓN


FECHA

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR RESISTENCIA

Cimentación Cuadrada - Cimentación Superficial


: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO

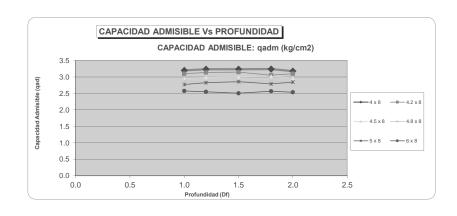
UBICACIÓN FECHA : SNC-LAVALIN : 01/09/2016

CIMENTACION SUPERFICIAL

CAPACIDAD ADMISIBLE POR ASENTAMIENTO

Presión por carga admisible	$q_{adm} =$	4.8	5.1	5.7	6.3	6.6	Kg/cm ²					
Relación de Poisson	μ =	0.3	0.3	0.3	0.3	0.3						
Módulo de Elasticidad	$\mathbb{E}_{s} =$	300	300	300	300	300	Kg/cm ²					
Asentamiento permisible	S _{i (max)} =	5.0	5.0	5.0	5.0	5.0	cm					
Ancho de la cimentación	В =	6.0	6.0	6.0	6.0	6.0	m					
Factor de forma	$I_f =$	1.06	1.06	1.06	1.06	1.06	m/m					
									CI	MENTACI	ON SUF	'ERFICI
Asentamiento	$S_i =$	0.050	0.049	0.048	0.050	0.049	m		CAPACID	AD ADM	ISIBLE	Vs PR
Asentamiento	S _i =	4.97	4.92	4.84	4.96	4.90	cm	6.0 1				
Presión por carga	$q_{adm} =$	4.8	5.1	5.7	6.3	6.6	Kg/cm ²	(g) 5.0				
	S_i (cm) =	9.22	9.94	11.02	12.10	12.82		용 용 4.0 -				
		Sup al perm	Sup al perm	Sup al perm	Sup al perm	Sup al perm		<u>-</u>				
Presión de carga asumida por asentamiento	q _{adm} =	2.6	2.5	2.5	2.6	2.5	Kg/cm ²			4	-	-
resion de curga asamma por asemannemo	S _i (cm) =		4.92	4.84				2.0 -				
	S _i (cm) =	OK!	OK!	OK!	OK!	OK!		8 1.0 -				
		UK:	UK:	UK:	UK:	UK:		1.0				
		15 =	$\frac{1-\mu^2}{E_s}$ If			L B		0.0 4	0 0.5	1. P	0 rofundidad	1.5 (Df)

RESUMEN DE LAS CAPACIDADES ADMISIBLES CALCULADAS TRANSFORMADOR


PROYECTO: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

SOLICITANTE : EDELNOR
FECHA : 01/09/2016
SECTOR : Subestación Bayovar

Cimentación Cuadrada - Cimentación Superficial

Officitación Guadrada - Officinación Gupernolai											
MATERIAL	BxL		CAPACIDAD ADMISIBLE: q _{adm} (kg/cm ²)					3			
	Df	4 x 8	4.2 x 8	4.5 x 8	4.8 x 8	5 x 8	6 x 8	γ (g/cm ³)	C (Kg/cm ²)	ф (°)	λ (°)
Arena Limosa con grava	1.0	3.2	3.1	2.9	2.9	2.8	2.6	2.30	0.00	40.0	28.0
Arena Limosa con grava	1.2	3.2	3.1	3.0	2.8	2.8	2.5	2.30	0.00	40.0	28.0
Arena Limosa con grava	1.5	3.2	3.1	3.0	2.9	2.9	2.5	2.30	0.00	40.0	28.0
Arena Limosa con grava	1.8	3.2	3.1	3.0	2.9	2.8	2.6	2.30	0.00	40.0	28.0
Arena Limosa con grava	2.0	3.2	3.1	3.0	2.8	2.8	2.5	2.30	0.00	40.0	28.0

Df= Profundidad de cimentación (medido desde terreno natural)

SUBESTACIÓN MIRADOR

Parámetros del Macizo

RESISTENCIA Y DEFORMACION DE LOS MACIZOS ROCOSOS

Versión 1.3

Proyecto: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR

40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

Solicitante: EDELNOR Estación: EG-01

Progresiva TALUD INFERIOR - SUBESTACIÓN MIRADOR

Litología: ANDESITA

1.0 Roca intacta

Peso específico	γ_i	:	0.0322 (MN/m ³)
Resistencia a la compresión uniaxial	$\sigma_{\it ci}$:	97.3 (MPa)
Constante de la roca intacta	m_i	:	19
Relación modular	MR	:	300
Cohesión	C_i	:	13 (MPa)
Angulo de fricción interna	ϕ_i	:	62 (°)
Módulo de elasticidad	E_i	:	29190 (MPa)
Relación de Poisson	v_i	:	0.2

2.0 Macizo Rocoso

Valoración de la masa rocosa, <i>RMR</i> ₈₉ (Bieniawski, 1989)	:	44
Índice Geológico de Resistencia, GSI (Hoek et al., 1995)	:	39
Indice, Q (Barton, 1974)	:	1.0
Espaciamiento de discontinuidades (m)	:	0.17
Factor de perturbación de la roca, D	:	0.85

2.1 Proyecto de ingeniería

Profundidad de Cimentación	Df =	1.5 m
----------------------------	------	-------

2.2 Estimación de las propiedades de resistencia

(Ruptura global del macizo)

a) Criterio de resistencia Mohr Coulomb

Bieniawski (1976)	C'm	=	2.2 Kg/cm ²
	φ'_{m}		22.2 °
Con criterio de falla de Hoek-Brown	c' _m	=	0.7 Kg/cm ²
	φ' _m	=	66.2 °
b) Criterio de Falla Generalizado de Hoek-Brown			
	m_b	=	0.430
	s	=	0.00008
	а	=	0.51
Resistencia a la tracción (σ'_{tm})			
	$\sigma_{\it tm}$	=	
	$\sigma_{\it tm}$	=	-0.2 Kg/cm ²
Resistencia a la compresión del macizo rocoso $(\sigma'_{\it cm})$			
	σ $_{\rm cm}$	=	$\sigma_{\it ci.}$ S a
(Inicio de ruptura)	σ $_{cm}$		7.5 Kg/cm ²

 σ $_{cm}$ =

78.4

Kg/cm²

2.3 Estimación de las propiedades de deformación

a) Criterios de deformación de macizos rocosos (Modulo de deformabilidad, E_m)

- Bieniawski (1978), Serafim y Pereira (1983)	E_m	=	5309	MPa
- Kulhawy y Goodman (1980)	E_m	=	4962.3	MPa
- Hoek (1995)	E_m	=	5237	MPa
- Grimstad y Barton (1993)	E_m	=	-	MPa
- Gokceoglu et al. (2003)	E_m	=	1859	MPa
- Hoek y Diederichs (2006)	E_m	=	1330	MPa
Valor asumido	E_m	=	1330	MPa

2.4 Esfuerzos in situ

k =

<i>k</i> =	1.50	En rocas no alteradas en superficie			
k =	0.25	En medios homogene	eos e iso	trópicos en función de i	
<i>k</i> =	1.0	Valor asumido			
Esfuerz	zo vertical	σ_{v}	=	0.05 MPa	
Esfuera	zo horizontal	σ_{h}	=	0.05 MPa	
Esfuera	zo principal mayor	$\sigma`_{Imax}$	=	0.05 MPa	
Esfuera	zo principal menor	σ _{3max}	=	0.05 MPa	

1.00 En rocas fracturadas en superficie

2.5 Carga admisible del macizo rocoso

Capacidad admisible (q_{ad})

$q_{\it ult}$	=	78.4 Kg/cm ²
q_{ult}	=	$\beta(N_{\beta}-\zeta)$
β	=	5.2 MPa
5	=	0.003
$\sigma*_{0l}$	=	0.013
N_{eta}	=	5.4
q_{ult}	=	28.4 Kg/cm ²
q_{ult}	=	$N_{ms} * U_{c}$
N_{ms}	=	0.0581
U_c	=	973 Kg/cm ²
$q_{\it ult}$	=	56.516 Kg/cm ²
q_{ad}	<	0.2 * U _c
U_c	=	973 Kg/cm ²
q_{ad}	<	194.6 Kg/cm ²
q_{ad}	<	0.33 * f'c
f'c	=	210.0 Kg/cm ²
q_{ad}	<	69.3 Kg/cm ²
	q_{ult} β ζ σ^*_{01} N_{β} q_{ult} q_{ult} N_{ms} U_c q_{ult} q_{ad} q_{ad} q_{ad} q_{ad} q_{ad}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

6.0 Parámetros para el diseño en ingeniería

ProgresivaTALUD INFERIOR - SUBESTACIÓN MIRADOR

Litología: ANDESITA

Criterio de resistencia Mohr Coulomb	C'm	=	0.7 Kg/cm ²
	φ' _m	=	66.2 °
Criterio de Falla Generalizado de Hoek-Brown	m_b	=	0.430
	S	=	0.000
	а	=	0.512
Angulo de arrancamiento	λ	=	40.0 °
Parámetros de deformación	E_m	=	1330 MPa
Capacidad de soporte última	q_{ult}	=	28.4 Kg/cm ²
Capacidad admisible del macizo rocoso	q_{ad}	=	9.5 Kg/cm ²
Adherencia con el concreto (Littlejohn y Bruce 1975)	τ	=	16.2 Kg/cm ²

RESISTENCIA	Y DEFORMA	CION DE LOS M.	ACIZOS ROCOSOS

Versión 1.3

Proyecto: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR

40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

Solicitante: EDELNOR Estación: EG-02

Progresiva TALUD MEDIO - SUBESTACIÓN MIRADOR

Litología: ANDESITA

1.0 Roca intacta

Peso específico	γ_i	:	0.0302 (MN/m ³)
Resistencia a la compresión uniaxial	$\sigma_{\it ci}$:	62.2 (MPa)
Constante de la roca intacta	m_i	:	19
Relación modular	MR	:	300
Cohesión	C_i	:	8 (MPa)
Angulo de fricción interna	ϕ_i	:	62 (°)
Módulo de elasticidad	E_i	:	18660 (MPa)
Relación de Poisson	v_i	:	0.2

2.0 Macizo Rocoso

Valoración de la masa rocosa, RMR 89 (Bieniawski, 1989)	:	41
Índice Geológico de Resistencia, GSI (Hoek et al., 1995)	:	36
Indice, Q (Barton, 1974)	:	0.7
Espaciamiento de discontinuidades (m)	:	0.09
Factor de perturbación de la roca, D	:	0.85

2.1 Proyecto de ingeniería

Profundidad de Cimentación Df = 1.5 m

2.2 Estimación de las propiedades de resistencia

(Ruptura global del macizo)

a) Criterio de resistencia Mohr Coulomb

Bieniawski (1976)	c' _m	=	2.0	Kg/cm ²
	φ'_{m}	=	20.6	° °
Con criterio de falla de Hoek-Brown	C'm	=	0.4	Kg/cm ²
	φ' _m	=	63.9) °
b) Criterio de Falla Generalizado de Hoek-Brown				
	m_b	=	0.357	,
	S	=	0.00005	;
	а	=	0.51	
Resistencia a la tracción (σ'_{tm})				
	$\sigma_{\it tm}$	=	-s σ _{ci} /m _b -0.1	
	$\sigma_{\it tm}$	=	-0.1	Kg/cm ²
Resistencia a la compresión del macizo rocoso ($\sigma'_{\it cm}$)				
	σ $_{cm}$	=	$\sigma_{\it ci.}$ s a	
(Inicio de ruptura)	σ $_{\it cm}$	=	3.7	Kg/cm ²

Kg/cm²

44.9

 σ cm =

2.3 Estimación de las propiedades de deformación

a) Criterios de deformación de macizos rocosos (Modulo de deformabilidad, E_m)

- Bieniawski (1978), Serafim y Pereira (1983)	E_m	=	4467	MPa
- Kulhawy y Goodman (1980)	E_m	=	1679.4	MPa
- Hoek (1995)	E_m	=	3523	MPa
- Grimstad y Barton (1993)	E_m	=	-	MPa
- Gokceoglu et al. (2003)	E_m	=	1528	MPa
- Hoek y Diederichs (2006)	E_m	=	740	MPa
Valor asumido	E_m	=	740	MPa

2.4 Esfuerzos in situ

k =

k =	1.50	En rocas no alterada	s en superficie	
k =	0.25	En medios homogene	eos e isotrópico	s en función de r
<i>k</i> =	1.0	Valor asumido		
	Esfuerzo vertical	σ_{v}	=	0.05 MPa
	Esfuerzo horizontal	σ_{h}	=	0.05 MPa
	Esfuerzo principal mayor	$\sigma`_{lmax}$	=	0.05 MPa
	Esfuerzo principal menor	σ _{3max}	=	0.05 MPa

1.00 En rocas fracturadas en superficie

2.5 Carga admisible del macizo rocoso

Capacidad admisible (q_{ad})

$q_{\it ult}$	=	44.9 Kg/cm ²
$q_{\it ult}$	=	$\beta(N_{\beta}$ – ζ)
β	=	2.8 MPa
5	=	0.003
$\sigma*_{01}$	=	0.019
N_{eta}	=	5.6
$q_{\it ult}$	=	15.5 Kg/cm ²
q_{ult}	=	$N_{ms} * U_{c}$
N_{ms}	=	0.0465
U_{c}	=	622 Kg/cm ²
$q_{\it ult}$	=	28.906 Kg/cm ²
q_{ad}	<	0.2 * U _c
U_{c}	=	622 Kg/cm ²
q_{ad}	<	124.4 Kg/cm ²
q_{ad}	<	0.33 * f'c
f'c	=	210.0 Kg/cm ²
q_{ad}	<	69.3 Kg/cm ²
	q_{ult} β ζ σ^*_{01} N_{β} q_{ult} q_{ult} N_{ms} U_c q_{ult} q_{ad} U_c q_{ad} q_{ad} q_{ad} q_{ad} q_{ad}	$q_{ult} = \beta = \zeta = \sigma^* o_1 = \delta^* o_2 = \delta^* o_3 = \delta^* o_4 = \delta^* o_$

6.0 Parámetros para el diseño en ingeniería

ProgresivaTALUD MEDIO - SUBESTACIÓN MIRADOR

Litologia. ANDLOTTA	Litología:	ANDESITA
---------------------	------------	-----------------

Criterio de resistencia Mohr Coulomb	C'm	=	0.4 Kg/cm ²
	φ' _m	=	63.9 °
Criterio de Falla Generalizado de Hoek-Brown	m_b	=	0.357
	S	=	0.000
	а	=	0.515
Angulo de arrancamiento	λ	=	40.0 °
Parámetros de deformación	E_m	=	740 MPa
Capacidad de soporte última	q_{ult}	=	15.5 Kg/cm ²
Capacidad admisible del macizo rocoso	q_{ad}	=	5.2 Kg/cm ²
Adherencia con el concreto (Littlejohn y Bruce 1975)	τ	=	10.4 Kg/cm ²

RESISTENCIA	Y DEFORMA	CION DE LOS M.	ACIZOS ROCOSOS

Versión 1.3

Proyecto: ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR

40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR

Solicitante: EDELNOR Estación: EG-03

Progresiva TALUD SUPERIOR - SUBESTACIÓN MIRADOR

Litología: ANDESITA

1.0 Roca intacta

Peso específico	γ_i	:	0.0306 (MN/m ³)
Resistencia a la compresión uniaxial	$\sigma_{\it ci}$:	46.8 (MPa)
Constante de la roca intacta	m_i	:	19
Relación modular	MR	:	300
Cohesión	C_i	:	6 (MPa)
Angulo de fricción interna	ϕ_i	:	62 (°)
Módulo de elasticidad	E_i	:	14040 (MPa)
Relación de Poisson	v_i	:	0.2

2.0 Macizo Rocoso

Valoración de la masa rocosa, <i>RMR</i> ₈₉ (Bieniawski, 1989)	:	38
Índice Geológico de Resistencia, GSI (Hoek et al., 1995)	:	33
Indice, Q (Barton, 1974)	:	0.5
Espaciamiento de discontinuidades (m)	:	0.07
Factor de perturbación de la roca. D	:	0.2

2.1 Proyecto de ingeniería

Profundidad de Cimentación Df = 1.5 m

2.2 Estimación de las propiedades de resistencia

(Ruptura global del macizo)

a) Criterio de resistencia Mohr Coulomb

Bieniawski (1976)	C'm	=	1.9	g Kg/cm ²
	φ'_{m}	=	18.9	9°
Con criterio de falla de Hoek-Brown	c' _m	=	0.0	S Kg/cm ²
	φ' _m	=	69.0) °
b) Criterio de Falla Generalizado de Hoek-Brown				
	m_b	=	1.33	1
	S	=	0.00034	4
	а	=	0.52	2
Resistencia a la tracción (σ'_{tm})				
	$\sigma_{\it tm}$	=	-s $\sigma_{\it ci}/m_{\it b}$	
	$\sigma_{\it tm}$	=	-0.1	Kg/cm ²
Resistencia a la compresión del macizo rocoso ($\sigma'_{\it cm}$)				
	σ $_{cm}$	=	$\sigma_{\it ci.}{\it s}^a$	
(Inicio de ruptura)	σ $_{cm}$		7.4	Kg/cm ²

Kg/cm²

65.7

2.3 Estimación de las propiedades de deformación

a) Criterios de deformación de macizos rocosos (Modulo de deformabilidad, E_m)

1.00

- Bieniawski (1978), Serafim y Pereira (1983)	E_m	=	3758	MPa
- Kulhawy y Goodman (1980)	E_m	=	982.8	MPa
- Hoek (1995)	E_m	=	2571	MPa
- Grimstad y Barton (1993)	E_m	=	-	MPa
- Gokceoglu et al. (2003)	E_m	=	1256	MPa
- Hoek y Diederichs (2006)	E_m	=	1056	MPa
Valor asumido	E_m	=	983	MPa

2.4 Esfuerzos in situ

k =

K =	1.50	En rocas no alteradas en superficie	
k =	0.25	En medios homogeneos e isotrópicos	s en función de l
k =	1.0	Valor asumido	
	Esfuerzo vertical	$\sigma_{v} =$	0.05 MPa
	Esfuerzo horizontal	$\sigma_h =$	0.05 MPa
	Esfuerzo principal mayor	σ _{lmax} =	0.05 MPa
	Esfuerzo principal menor	σ _{3max} =	0.05 MPa

En rocas fracturadas en superficie

2.5 Carga admisible del macizo rocoso

Capacidad admisible (q_{ad})

,		
$q_{\it ult}$	=	65.7 Kg/cm ²
$q_{\it ult}$	=	$\beta(N_{\beta}-\zeta)$
β	=	7.8 MPa
ζ	=	0.002
$\sigma*_{0l}$	=	0.007
N_{eta}	=	5.3
q_{ult}	=	41.3 Kg/cm ²
q_{ult}	=	$N_{ms} * U_{c}$
N_{ms}	=	0.0372
${U}_{c}$	=	468 Kg/cm ²
q_{ult}	=	17.402 Kg/cm ²
q_{ad}	<	0.2 * U _c
${U}_{c}$	=	468 Kg/cm ²
q ad	<	93.6 Kg/cm ²
q_{ad}	<	0.33 * f'c
f' c	=	210.0 Kg/cm ²
q ad	<	69.3 Kg/cm ²
	 q ult β ζ σ*01 N_β q ult q ult N_{ms} U_c q ult q ad U_c q ad Q ad Q ad f c 	$q_{ult} = \beta = \beta = \zeta = \sigma *_{01} = \sigma *_{01} = \eta_{ult} = $

6.0 Parámetros para el diseño en ingeniería

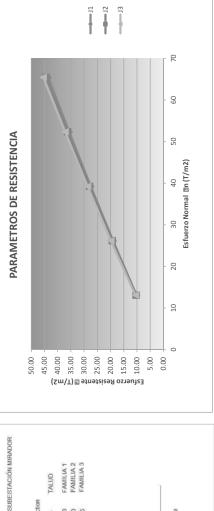
ProgresivaTALUD SUPERIOR - SUBESTACIÓN MIRADOR

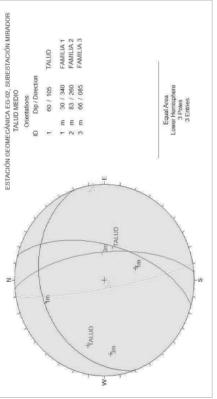
Criterio de resistencia Mohr Coulomb	C'm	=	0.6 Kg/cm ²
	φ' _m	=	69.0 °
Criterio de Falla Generalizado de Hoek-Brown	m_b	=	1.331
	S	=	0.000
	а	=	0.518
Angulo de arrancamiento	λ	=	40.0 °
Parámetros de deformación	E_m	=	983 MPa
Capacidad de soporte última	q_{ult}	=	17.4 Kg/cm ²
Capacidad admisible del macizo rocoso	q_{ad}	=	5.8 Kg/cm ²
Adherencia con el concreto (Littlejohn y Bruce 1975)	τ	=	7.8 Kg/cm ²

SUBESTACIÓN MIRADOR

Parámetros de Discontinuidad

PARÁMETROS DE RESISTENCIA DE DISCONTINUIDADES


ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR Proyecto:


EDELNOR Solicitante:

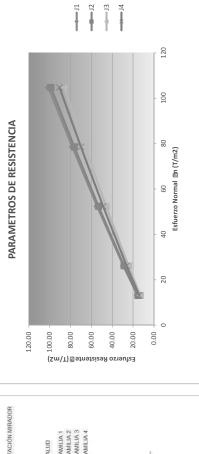
BAYOVAR - SAN JUAN DE LURIGANCHO - LIMA Ubicación:

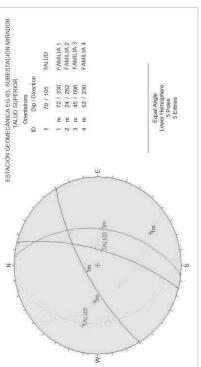
Coordenadas UTM: 283614 E; 8683102 N Litología: ANDESITA Estación:

									O	RITERI	O DE R	OTUR	CRITERIO DE ROTURA BARTON CHOUBEY	ON CH	OUBEY		
DISCONTINUIDAD BIZAMIENTO DIRECCIÓN DE ESPACIADO PERSISTENCIA	OIRECCIÓN DE ESPACIADO PERSIST	ESPACIADO PERSIST	PERSIST	ENCIA	RUGOSIDAD	KESISTENCIA ICSn	ANGULO DE FRICCION	5 m	_	10 m	u	15 m	n	20 m	m	25	25 m
BUZAMIENTO (cm) (m)	BUZAMIENTO (cm) (m)	(cm) (m)	(m)		JRCn	(MPa)	RESIDUAL (ф)	c (t/m²)	• ©	c (t/m²)	• ©	c (t/m²)	• ©	c (t/m²)	ф	c (t/m²)	• (0)
85 100 15.0 8.0	15.0		8.0		6.0	26.6	24.0	6:0	35.4	1.7	33.6	2.4	32.5	3.2	31.8	3.9	31.2
35 310 12.0 3.0	12.0		3.0		6.0	21.5	25.0	6:0	35.8	1.7	34.0	2.5	33.0	3.2	32.2	4.0	31.6
85 185 10.0 15	10.0		1.5		6.0	36.6	24.3	6.0	36.5	1.7	34.7	2.5	33.7	3.3	32.9	4.0	32.4

PARÁMETROS DE RESISTENCIA DE DISCONTINUIDADES

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR EDELNOR BAYOVAR - SAN JUAN DE LURIGANCHO - LIMA Proyecto:


Solicitante: Ubicación:


EG-03 283602 E; 8683105 N ANDESITA

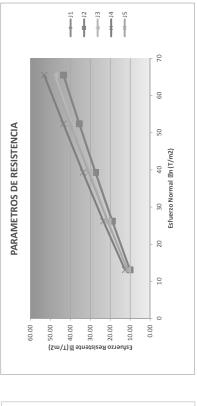
Estación: Coordenadas UTM:

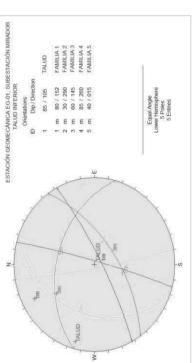
Litología:

		_			PECICIPENCIA	ANCTITO DE			RITER	O DE R	ROTUR	CRITERIO DE ROTURA BARTON CHOUBEY	ON CH	OUBEY		
DO PERSISTENCIA RU	PERSISTENCIA	PERSISTENCIA	RUGOS	IDAD	KESISTENCIA JCSn	FRICCION	5 m	u	10 m	m	20 m	m	30	30 m	40	40 m
BUZAMIENTO (cm) (m) JRCn	(m)	(m)	JR	Cn	(MPa)	RESIDUAL (\$\phi\$)	c (t/m²)	\$ ©	c (t/m²)	\$ ©	c (t/m²)	\$ @	c (t/m²)	\$ 0	c (t/m²)	• ©
72 330 14.0 5.0 7.	14.0 5.0	5.0	7.	7.0	20.4	35.0	1.6	47.4	2.9	45.3	5.3	43.2	7.6	42.0	6.6	41.1
24 262 10.0 3.5 7.0	10.0	3.5	7.0		28.0	33.3	1.5	46.7	2.8	44.6	5.2	42.5 7.5	7.5	41.3	9.7	40.4
45 96 6.0 2.0 6.0	6.0 2.0	2.0	9.9	0	20.4	31.7	1.1	42.3	2.0	40.5	3.9	38.7	5.6	37.7	7.3	36.9
52 230 3.0 0.5 7.0	3.0 0.5	0.5	7.0		21.5	31.7	1.4	44.2	2.6	42.1	4.8	40.0	6.9	38.8	8.9	37.9

PARÁMETROS DE RESISTENCIA DE DISCONTINUIDADES

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 KV Y LINEAS ASOCIADAS - EDELNOR
BAYOVAR - SAN JUAN DE LURIGANCHO - LIMA
EG-01
283622 E; 8683101 N
ANDESITA Proyecto:

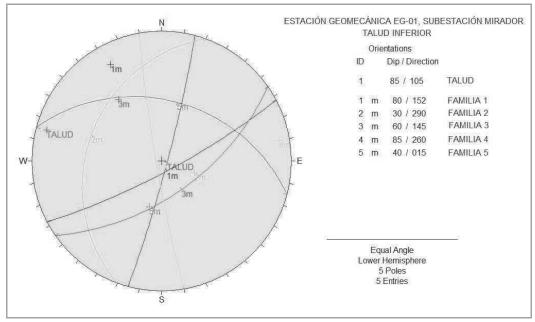

Solicitante:


Ubicación:

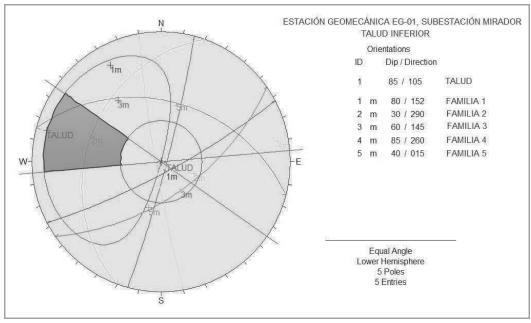
Coordenadas UTM: Estación:

Litología:

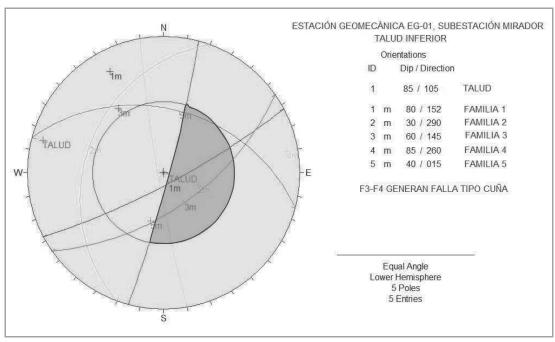
	_	\$ 0	31.1	31.1	33.2	36.1	34.3
	25 m	c (t/m²)	3.9	3.9	4.9	5.3	4.3
JUBEY	u	ф (i)	31.7	31.7	33.9	36.8	34.9
ON CHC	20 m	c (t/m²)	3.2	3.2	4.0	4.3	3.5
CRITERIO DE ROTURA BARTON CHOUBEY	m	• ©	32.4	32.4	34.7	37.7	35.6
ROTUR/	15 m	c (t/m²)	2.4	2.4	3.1	3.3	3.3
IO DE F	10 m	\$ (i)	33.5	33.5	36.0	38.9	36.7
CRITER	10	c (t/m²)	1.7	1.7	2.1	2.3	1.8
,	5 m	ф (0)	35.3	35.3	38.1	41.0	38.5
	w	c (t/m²)	6:0	6:0	1.1	1.2	1.0
	ANGULO DE	RESIDUAL (\$)	22.7	21.7	24.3	25.7	25.3
	RESISTENCIA ICSn	(MPa)	42.9	62.2	31.2	53.0	53.0
	RUGOSIDAD	JRCn	6.0	6.0	7.0	7.0	6.0
	PERSISTENCIA	(m)	10.0	4.0	2.0	2.0	1.0
	ESPACIADO	(cm)	24.0	20.0	18.0	12.0	7.0
	BIZAMIENTO DIRECCIÓN DE ESPACIADO	BUZAMIENTO	152	290	145	260	15
	BITZAMIENTO		08	30	09	85	40
	DISCONTINITIDAD		J1	12	J3	J4	15

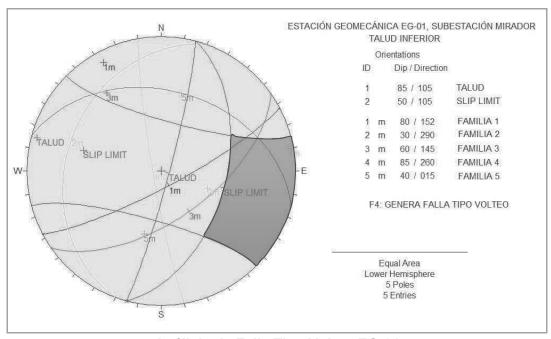


SUBESTACIÓN MIRADOR

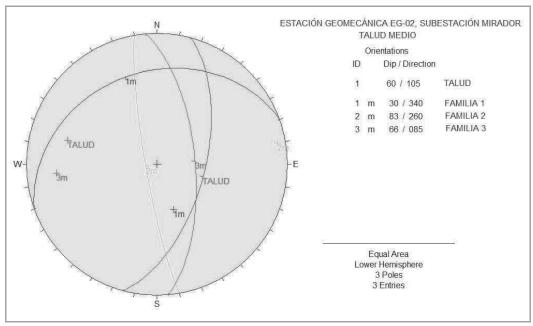

Análisis de Discontinuidad

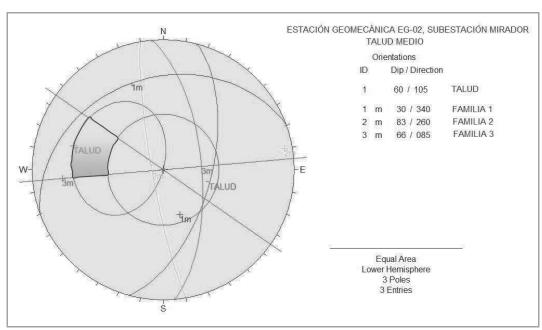
ANÁLISIS DE DISCONTINUIDADES


PROYECCIÓN ESTEREOGRÁFICA SUBESTACIÓN MIRADOR – ESTACIÓN GEOMECÁNICA 01

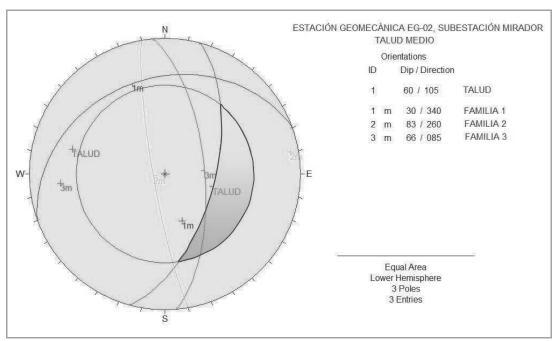

Estación Geomecánica EG-01

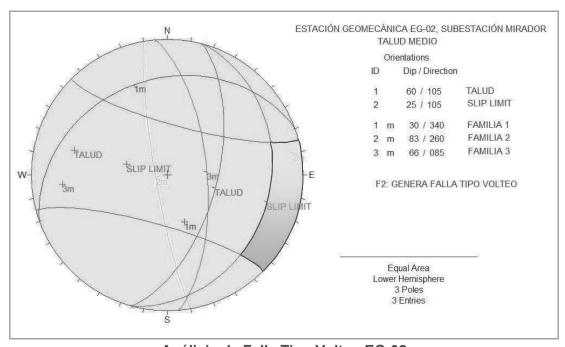
Análisis de Falla Planar EG-01


Análisis de Falla tipo Cuña EG-01

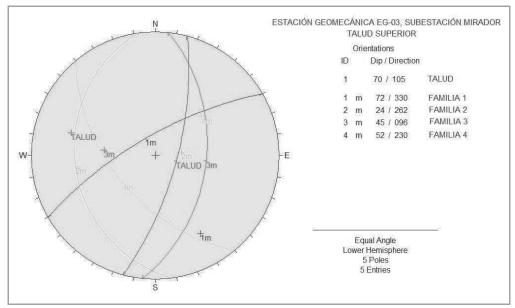

Análisis de Falla Tipo Volteo EG-01

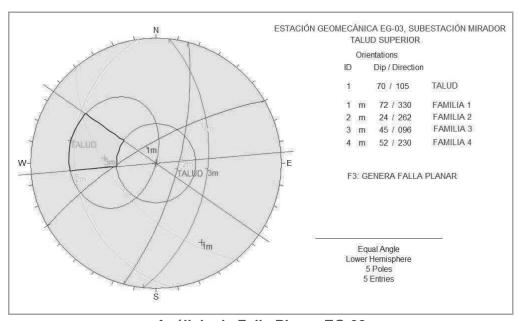
ANÁLISIS DE DISCONTINUIDADES


PROYECCIÓN ESTEREOGRÁFICA SUBESTACIÓN MIRADOR – ESTACIÓN GEOMECÁNICA 02

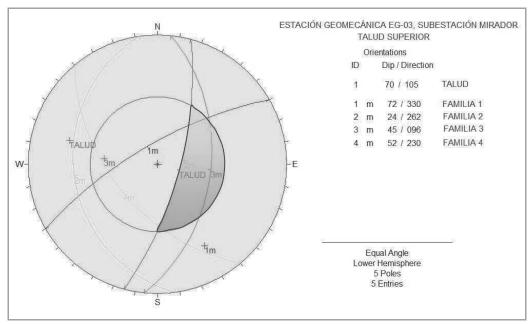

Estación Geomecánica EG-02

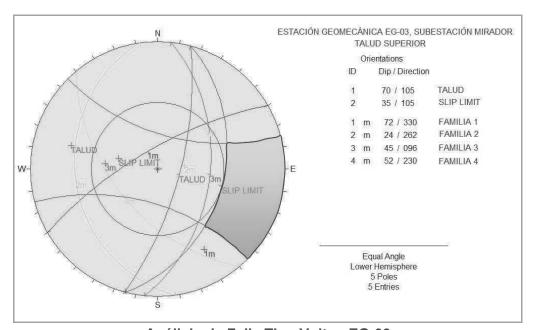
Análisis de Falla Planar EG-02


Análisis de Falla tipo Cuña EG-02


Análisis de Falla Tipo Volteo EG-02

ANÁLISIS DE DISCONTINUIDADES


PROYECCIÓN ESTEREOGRÁFICA SUBESTACIÓN MIRADOR – ESTACIÓN GEOMECÁNICA 03


Estación Geomecánica EG-03

Análisis de Falla Planar EG-03

Análisis de Falla tipo Cuña EG-03

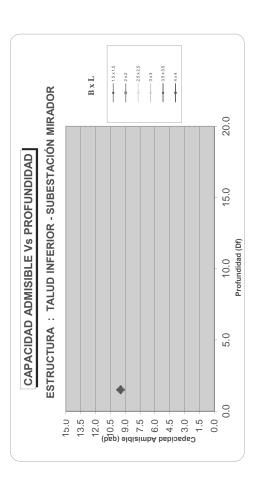
Análisis de Falla Tipo Volteo EG-03

SUBESTACIÓN MIRADOR

Análisis de Estabilidad

SUBESTACIÓN MIRADOR

Capacidad Admisible


ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO ARCHIVO N°: cap admisible.xls REALIZADO: HSA FECHA: 03/10/2016

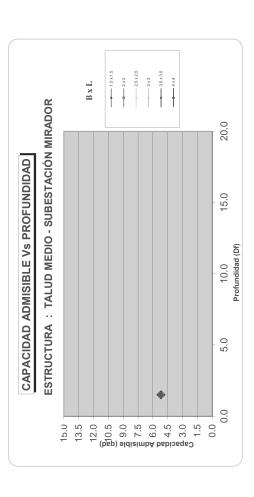
SOLICITANTE : EDELNOR UBICACIÓN : TALUD INFERIOR - SUBESTACIÓN MIRADOR

ESTRUCTURA: TALUD INFERIOR - SUBESTACIÓN MIRADOR

	βxΓ			q _{adm} (kg/cm ²)	g/cm²)				,			
MATERIAL	Df	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	3.5 x 3.5	4 x 4	γ (g/cm²)	C (Kg/cm²)	(i) ф	E _s (Kg/cm [*])	tipo de suelo
ANDESITA	1.5	9.5	9.5	9.5	9.5	9.5	5.6	3.22	0.73	66.2	13297	A Odil

Df=Profundidad de cimentación (medido desde el nivel de piso terminado)

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


ARCHIVO N°: cap admisible.xls REALIZADO: HSA FECHA: 03/10/2016

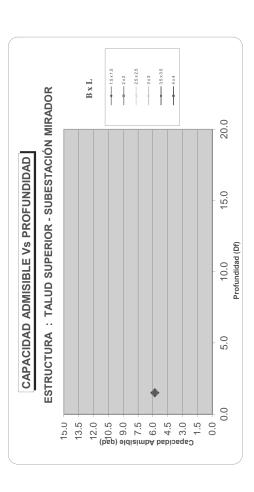
SOLICITANTE : EDELNOR UBICACIÓN : TALUD MEDIO - SUBESTACIÓN MIRADOR

ESTRUCTURA: TALUD MEDIO - SUBESTACIÓN MIRADOR

	ВхГ			q _{adm} (kg/cm ²)	g/cm²)			,	,		,	
MATERIAL	Df	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	3.5 x 3.5	4 x 4	γ (g/cm²)	C (Kg/cm²)	(c) ф	E _s (Kg/cm ^r)	tipo de suelo
ANDESITA	1.5	5.2	5.2	5.2	5.2	5.2	5.2	3.02	0.40	63.9	7401	TIPO IV

Df=Profundidad de cimentación (medido desde el nivel de piso terminado)

ESTUDIO GEOLOGICO GEOTECNICO PARA EL PROYECTO NUEVA S.E. BAYOVAR 40MVA 60/20/10 Kv Y LINEAS ASOCIADAS - EDELNOR PROYECTO


SOLICITANTE : EDELNOR
UBICACIÓN : TALUD SUPERIOR - SUBESTACIÓN MIRADOR

ARCHIVO N°: cap admisible.xls REALIZADO: HSA FECHA: 03/10/2016

ESTRUCTURA: TALUD SUPERIOR-SUBESTACIÓN MIRADOR

	βxΓ			q _{adm} (k	1 _{adm} (kg/cm²)				٠			
MATERIAL	Df	1.5 x 1.5	2 x 2	2.5 x 2.5	3 x 3	3.5 x 3.5	4 x 4	γ (g/cm²)	C (Kg/cm²)	ф (i)	E _s (Kg/cm ^r)	tipo de suelo
ANDESITA	1.5	5.8	5.8	5.8	5.8	5.8	5.8	3.06	0.63	0.69	9828	TIPO IV

Df=Profundidad de cimentación (medido desde el nivel de piso terminado)

Panel Fotográfico

PANEL FOTOGRÁFICO SUB ESTACIÓN MIRADOR ESTACIONES GEOMECÁNICAS

SUBESTACIÓN MIRADOR – ESTACIÓN GEOMECÁNICA-01

Foto 01. Vista de la estación geomecánica EG-01

Foto 02. Vista del ensayo de resistencia de la roca con el esclerómetro

Foto 03. Vista del ensayo de TILLT TEST EG-01

ESTACIÓN GEOMECÁNICA-02

Foto 05. Vista del ensayo de resistencia de la roca con el esclerómetro

Foto 04. Vista de la estación geomecánica EG-02

Foto 06. Vista del ensayo de TILLT TEST EG-02

ESTACIÓN GEOMECÁNICA-03

Foto 08. Vista del ensayo de resistencia de la roca con el esclerómetro

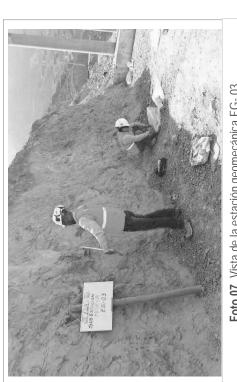


Foto 07. Vista de la estación geomecánica EG-03

Foto 09. Vista del ensayo de TILLT TEST EG- 03

PANEL FOTOGRÁFICO SUB ESTACIÓN MIRADOR MASW 2D

SUBESTACIÓN MIRADOR – PRUEBA MASW 2D-01

Foto 10. Vista de la prueba MASW 2D - 01

PANEL FOTOGRÁFICO SUB ESTACIÓN BAYOVAR CALICATAS

SUBESTACIÓN BAYOVAR – EXCAVACIÓN DE CALICATAS

Foto 13. Vista panorámica de la Calicata 02

Foto 16. Vista del interior Calicata 03

Foto 17. Vista panorámica de la Calicata 04

PANEL FOTOGRÁFICO SUB ESTACIÓN BAYOVAR DPL

SUBESTACIÓN BAYOVAR – ENSAYO DE DPL

Foto 19. Vista del Ensayo DPL 01

Foto 20. Vista del Ensayo DPL 02

Foto 22. Vista del Ensayo DPL 04

Foto 23. Vista del Ensayo DPL 05

PANEL FOTOGRÁFICO SUB ESTACIÓN BAYOVAR MASW 2D

SUBESTACIÓN BAYOVAR - ENSAYO MASW - 2D

Foto 24. Vista del Ensayo MASW 2D - 02

PANEL FOTOGRÁFICO LINEA AÉREA SEV

LINEA AÉREA – ENSAYOS SEV

Foto 25. Vista del Ensayo SEV-01

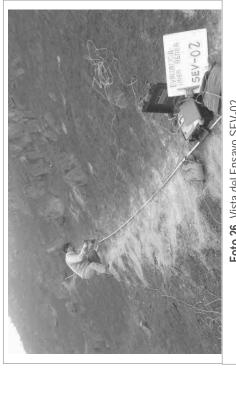


Foto 26. Vista del Ensayo SEV-02

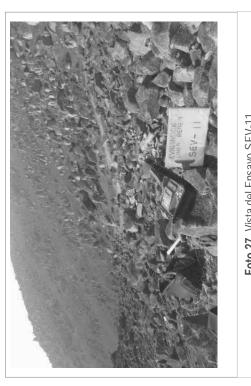


Foto 27. Vista del Ensayo SEV-11

PANEL FOTOGRÁFICO LINEA AÉREA ESTACIONES GEOMECÁNICAS

LÍNEA AÉREA – ESTACIÓN GEOMECANICA EG-01-V-00

Foto 28. Vista panorámica Estación Geomecánica EG-01-V-00

Foto 29. Vista del ensayo de Resistencia con Esclerómetro EG-01-V-00

Foto 30. Vista del ensayo TILLT TEST EG-01-V-00

LÍNEA AÉREA – ESTACIÓN GEOMECANICA EG-02-V-02

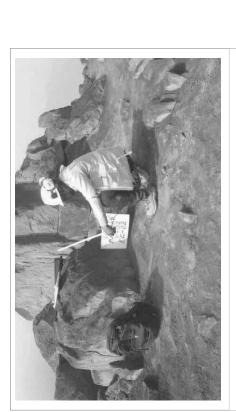


Foto 31. Vista panorámica Estación Geomecánica EG-02-V-02

Foto 32. Vista del ensayo de Resistencia con Esclerómetro EG-02-V-02

Foto 33. Vista del ensayo TILLT TEST EG-02-V-02

LÍNEA AÉREA – ESTACIÓN GEOMECANICA EG-03

Foto 34. Vista panorámica Estación Geomecánica EG-03

Foto 35. Vista del ensayo de Resistencia con Esclerómetro EG-03

Foto 36. Vista de la estación Geomecánica EG-03

LÍNEA AÉREA – ESTACIÓN GEOMECANICA EG-04-V-04

Foto 37. Vista panorámica Estación Geomecánica EG-04-V-04

Foto 38. Vista del ensayo de Resistencia con Esclerómetro EG-04-V-04

Foto 39. Vista del ensayo TILLT TEST EG-04-V-04

LÍNEA AÉREA – ESTACIÓN GEOMECANICA EG-05

Foto 40. Vista panorámica Estación Geomecánica EG-05

Foto 41. Vista del ensayo de Resistencia con Esclerómetro EG-05

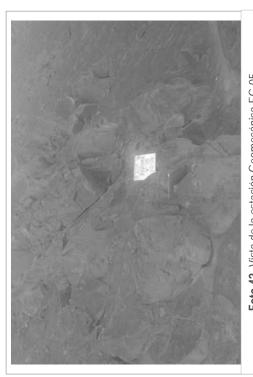


Foto 42. Vista de la estación Geomecánica EG-05

PANEL FOTOGRÁFICO LINEA SUBTERRANEA CALICATAS

LINEA SUBTERRANEA – EXCAVACIÓN DE CALICATAS

Foto 43. Vista panorámica de la Calicata 05

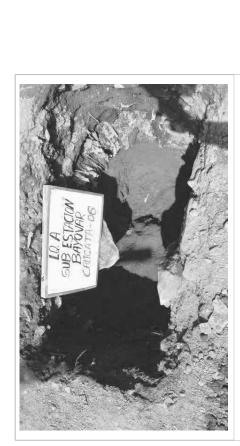


Foto 45. Vista panorámica de la Calicata 06

Foto 44. Prueba de densidad de Calicata 05

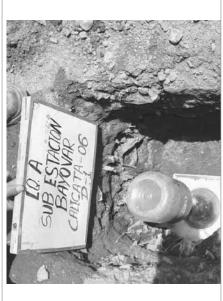


Foto 46. Prueba de densidad de calicata 06

Foto 47. Vista panorámica de la Calicata 07

Foto 49. Vista panorámica de la Calicata 09

Foto 48. Vista del interior Calicata 08

Foto 50. Prueba de densidad Calicata 09

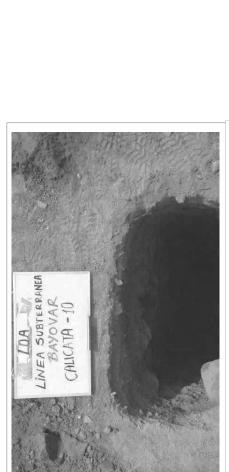


Foto 51. Vista panorámica de la Calicata 10

Foto 53. Vista panorámica de la Calicata 11

Foto 52. Prueba de densidad de Calicata 10

Foto 54. Prueba de densidad de calicata 11

Foto 55. Vista panorámica de la Calicata 12

Foto 57. Vista panorámica de la Calicata 13

Foto 56. Prueba de densidad de Calicata 12

Foto 58. Prueba de densidad de calicata 13

Foto 60. Prueba de densidad de Calicata 14

Foto 62. Prueba de densidad de calicata 15

Foto 59. Vista panorámica de la Calicata 14

Foto 61. Vista panorámica de la Calicata 15

Foto 64. Prueba de densidad de Calicata 16

PANEL FOTOGRÁFICO LINEA SUBTERRANEA DPL

LINEA SUBTERRANEA – ENSAYOS DPL

Foto 66. Vista de ensayo DPL-07

Foto 65. Vista de ensayo DPL-06

Foto 67. Vista de ensayo DPL-08

Foto 68. Vista de ensayo DPL-09

Foto 70. Vista de ensayo DPL-11

Foto 69. Vista de ensayo DPL-10

Foto 71. Vista de ensayo DPL-12

Foto 72. Vista de ensayo DPL-13

SUBESTACIÓN BAYOVAR – EXCAVACIÓN DE CALICATAS

PANEL FOTOGRÁFICO LINEA SUBTERRANEA SEV

LINEA SUBTERRANEA – ENSAYOS SEV

Foto 75. Vista de ensayo SEV-03

Foto 77. Vista de ensayo SEV-05

Foto 78. Vista de ensayo SEV-06

Foto 80. Vista de ensayo SEV-08

Foto 81. Vista de ensayo SEV-09

Foto 82. Vista de ensayo SEV-10

PANEL FOTOGRÁFICO LINEA SUBTERRANEA MASW 2D

LINEA SUBTERRANEA – ENSAYOS MASW 2D

Foto 83. Vista de ensayo MASW 2D-03

Foto 85. Vista de ensayo MASW 2D-05

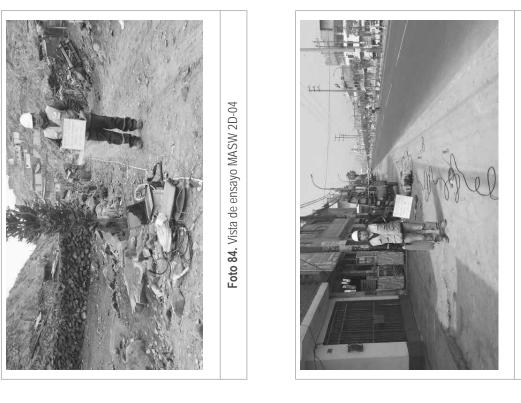



Foto 86. Vista de ensayo MASW 2D-06

Planos

PERFILES MODALES DE SUELOS

SUELO CASA BLANCA

CODIGO CALICATA : SL-01

CLASIFICACIÓN NATURAL: Soil Taxonomy-USDA (2014): Lithic Torriorthents

ZONA DE VIDA : Desierto Seco Subtropical (ds-S) FISIOGRAFÍA : Vertientes montañosas empinadas

RELIEVE : Ondulado suave PENDIENTE : Plana o casi a nivel

MATERIAL PARENTAL : Residual FRAG. ROCOSOS SUPERF: Pedregoso VEGETACIÓN : No presenta

Horizonte	Profundidad (cm)	Descripción
Ар	0 – 22	Arena franca, color blanco rosáceo (7.5 YR 8/2) en seco; grano simple, suelto, no presenta raíces, gravilla en menos del 40 % del horizonte; moderadamente básica (8.21), moderadamente salino (6.93 dS/m), bajo en materia orgánica (0.09 %), con límite gradual al
R	>22	Contacto con material madre (lecho rocoso).

SUELO ROSAL

CODIGO CALICATA : SL-02

CLASIFICACIÓN NATURAL : Soil Taxonomy-USDA (2014): Lithic

Torriorthents

ZONA DE VIDA : Desierto Seco Subtropical (ds-S) FISIOGRAFÍA : Vertientes montañosas empinadas

RELIEVE : Ondulado suave

PENDIENTE : Empinada a muy empinada

MATERIAL PARENTAL: Residual

FRAG. ROCOSOS SUPERF : Moderadamente predregoso

VEGETACIÓN : No presenta

Horizonte	Profundidad (cm)	Descripción
С	0 – 20	Franco arenoso, color rosado (7.5 YR 8/4) en seco; grano simple, suelto, no presenta raíces, gravilla en menos del 20 % del horizonte; neutra (7.38), moderadamente salino (4.59 dS/m), bajo en materia orgánica (0.29 %), con límite difuso al
Cr	20 – 42	Franco arenoso, color rosado (7.5 YR 8/4) en seco; grano simple, suelto, no presenta raíces, gravilla en menos del 60 % del horizonte; neutra (7.03), moderadamente salino (6.21 dS/m), bajo en materia orgánica (0.32 %), con límite gradual al
R	>42	Contacto con material madre (lecho rocoso).

PANEL FOTOGRÁFICO

SUELO CASA BLANCA (SL-01)

Imagen 01: Paisaje de vertientes montañosas en zona de vida de Desierto Seco Subtropical (ds-S)

Imagen 02: Perfil modal del suelo Casa Blanca con secuencia de horizontes Cr - R

SUELO ROSAL (SL-02)

Imagen 03: Paisaje de vertientes montañosas en zona de vida de Desierto Seco Subtropical (ds-S)

Imagen 04: Perfil modal del suelo Rosal con secuencia de horizontes C – Cr – R

MÉTODOS DE ANÁLISIS DE LABORATORIO

Laboratorio de Análisis de Suelos, Plantas, Aguas y Fertilizantes, Facultad de Agronomía - (Universidad Nacional Agraria – La Molina).

1. Análisis Mecánico : Textura por el Método del Hidrómetro.

2. Conductividad Eléctrica : C.E lectura del extracto de la pasta saturada

(Relación suelo-agua 1:1).

3. pH : Método del Potenciómetro, relación suelo-agua 1:1,

en la pasta saturada.

4. Calcáreo total : Método gaso-volumétrico.

5. Materia Orgánica : Método de Walkley y Black, % M.O = % C x 1,724

6. Nitrógeno Total : Método de MicroKjeldahl.

7. Fósforo : Método de Olsen Modificado, Extracto NaHCO₃ 0,5

M, pH 8,5.

8. CIC* : Acetato de Amonio 1N pH 7,0.

9. Cationes Cambiables : Determinaciones en Extracto Amónico

Ca+2 : Espectrofotometría de Absorción Atómica

Mg⁺²: Espectrofotometría de Absorción Atómica

K⁺ : Espectrofotometría de Absorción Atómica

Na⁺ : Espectrofotometría de Absorción Atómica

10. Aluminio Intercambiable : Cloruro de Potasio 1N.

Equivalencias:

- 1 ppm = 1 mg / Kilogramo
- 1 milimho/cm = 1 deciSiemens/metro
- 1 miliequivalente (meq) / 100 g = 1 cmol (+) / kilogramo
- Sales solubles totales (TDS) en ppm o mg/kg = 640 x CEes
- CE mmho / cm \times 2 = CE (es) mmho / cm.

^{*}Capacidad de Intercambio Catiónico.

ESCALAS DE INTERPRETACIÓN

Para la identificación cartográfica de los suelos se base en la siguiente escala de interpretación:

1. TEXTURA

Términos generales			
Suelos	Textura	Clase textural	
ARENOSOS	Gruesa	Arena (gruesa, media, fina y muy fina)	
AKLINOSOS	Gruesa	Arena franca (gruesa, media, fina y muy fina)	
		Franco arenosa gruesa	
	Moderadamente Gruesa	Franco arenosa	
		Franco arenosa fina	
	Media	Franco arenosa muy fina	
FRANCOS		Franca	
TIVANCOS		Franca limosa	
		Limo	
	Moderadamente Fina	Franco arcillosa	
		Franco arcillosa arenosa	
		Franco arcillosa limosa	
		Arcillo arenosa	
ARCILLOSOS	Fina	Arcillo limosa	
		Arcilla	

2. CONDUCTIVIDAD ELÉCTRICA

Nivel	dS/m
Muy ligeramente salino	menor de 2
Ligeramente salino	2 – 4
Moderadamente salino	4 – 8
Fuertemente salino	Mayor de 8

3. PROFUNDIDAD EFECTIVA

Término descriptivo	Rango (cm.)
Muy superficial	< de 25
Superficial	25 – 50
Moderadamente Profundo	50 – 100
Profundo	100 – 150
Muy profundo	> de 150

4. REACCIÓN DEL SUELO

Término descriptivo	Rango (pH)
Ultra ácida	Menor de 3,5
Extremadamente ácida	3,6 - 4,5
Muy fuertemente ácida	4,5-5,0
Fuertemente ácida	5,1 – 5,5
Moderadamente ácida	5,6-6,0
Ligeramente ácida	6,1-6,5
Neutra	6,6-7,3
Ligeramente básica	7,4-7,8
Moderadamente básica	7,9 - 8,4
Fuertemente básica	8,5 - 9,0
Muy fuertemente básica	Mayor de 9,0

5. MATERIA ORGÁNICA

Nivel	Porcentaje (%)
Bajo	< de 2
Medio	2 – 4
Alto	> de 4

6. FOSFORO DISPONIBLE

Nivel	ppm
Bajo	< de 7
Medio	7 – 14
Alto	> de 14

7. POTASIO DISPONIBLE

Nivel	ppm
Bajo	< de 100
Medio	100 – 240
Alto	> de 240

8. CALCAREO TOTAL

Nivel	Porcentaje (%)
Bajo	Menor de 1%
Medio	1 – 5
Alto	5 – 15
Muy alto	Mayor de 15

ANÁLISIS CARACTERIZACIÓN DE SUELOS

5 5 5

8.80 8.80 8.00 8.00

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA LABORATORIO DE ANALISIS DE SUELOS, PLANTAS, AGUAS Y FERTILIZANTES FACULTAD DE AGRONOMIA - DEPARTAMENTO DE SUELOS

ANALISIS DE SUELOS : CARACTERIZACION

LOA CONSULTORÍA Y PROYECTOS AMBIENTALES S.A.C. Solicitante

LIMA Departamento Referencia Distrito

SAN JUAN DE LURIGANCHO H.R. 55628-131C-16

Fact.: 38569

Provincia : Predio Fecha

14/08/16

LIMA

S Na. Cationes Cambiables Mg⁻² K⁻ Con 용

Limo

Arena

¥

WO ×

Caco,

(1.1) dS/m CE

Número de Muestra

Claves

9

8

1:13 돐

ppm a.

> 0.09 0.32

0.00

7.38 4.59 7.03 6.21

SL-01-1 SL-02-1 SL-02-2

11589 11590 1159

Sat De Bases

Suma 8

0000 1.16 1.58 Textural A.Fr. Classe Avcilla Analisis Mecanico

A # Aena . Afr. # Awna Franca . Fr. # Franco Aenoso . Fr. # Franco Lindoo . L. Limoso . Fr.A. A = Franco Arollo Avendao . Fr.A. # Franco Arolloso Fr.Nr.L. = Franco Arcillo Limoso , Ar.A. = Arcitlo Averseo ; Ar.L. = Arcillo Limoso ; Ar. = Arcilloso

Av. La Molina s/n Campus UNALM - Telf.: 614-7800 Anexo 222 Teléfono Directo: 349-5622 e-mail: labsuelo@lamolina.edu.pe

MATRICES DE EVALUACIÓN EMPLEADAS PARA LA CALIFICACIÓN DEL PAISAJE

Cuadro 1-1 Matriz para la Evaluación de la Calidad Visual del Paisaje – Bureau of Land Management (BLM)

Componente	Calidad Visual del Paisaje		
Componente	Alta	Media	Baja
Morfología	Relieve muy montañoso, marcado y prominente, (acantilados, agujas, grandes formaciones rocosas); o bien relieve de gran variedad superficial o muy erosionado, o sistemas de dunas, o bien presencia de algún rasgo muy singular y dominantes.	interesantes o relieve	de valle planos, pocos o ningún detalle
	5	3	1
Vegetación	Gran variedad de tipos de vegetación, con formas, texturas y distribución interesante.	Alguna variedad en la vegetación pero solo uno o dos tipos.	Poca o ninguna variedad o contraste en la vegetación.
	5 Factor dominante en el paisaie,	3	_
Agua	Factor dominante en el paisaje, apariencia limpia y clara, aguas blancas (rápidos y cascadas) o láminas de agua en reposo.	Agua en movimiento o reposo pero no dominante en el paisaje.	Ausente o inapreciable.
	5	3	0
Color	Combinaciones de color intensas y variadas o contrastes agradables.	Alguna variedad e intensidad en los colores y contrastes pero no actúa como elemento dominante.	color o contraste,
Fondo escénico	El paisaje circundante potencia mucho la calidad visual.	El paisaje circundante incrementa moderadamente la calidad visual en el conjunto.	no ejerce influencia en
Rareza	Único o poco corriente o muy raro en la región, posibilidad de contemplar fauna y vegetación excepcional.	Característico, o aunque similar a otros en la región.	Bastante común en la región.
			1
Actuación humana	Libre de actuaciones estéticamente no deseadas o con modificaciones que inciden favorablemente en la calidad visual.	La calidad escénica está afectada por modificaciones poco armoniosas, aunque no en su totalidad, o las actuaciones no añaden calidad visual.	Modificaciones intensas y extensas, que reducen o anulan la calidad escénica.
	2	Calidad visual.	0

Cuadro 1-2 Escala de referencia para la estimación de la calidad visual del paisaje.

Rango	Calidad visual
1 -7	Baja
8 - 14	Baja a media
15 – 21	Media
22 - 28	Media a alta
29 - 33	Alta

Cuadro 1-3 Análisis de fragilidad y capacidad de absorción del paisaje (Yeomans, 1986)

Factor	Condiciones	Puntajes	
		Nominal	Numérico
Pendiente (P)	Inclinado (pendiente >55%)	Bajo	1
	Inclinación suave (25-55% pendiente)	Moderado	2
	Poco inclinado (0-25% de pendiente)	Alto	3
Estabilidad del suelo y erosionabilidad (E)	Restricción alta derivada de riesgos alto de erosión e inestabilidad, pobre regeneración potencial	Bajo	1
	Restricción moderada debido a ciertos riesgos de erosión e inestabilidad y regeneración potencial	Moderado	2
	Poca restricción por riesgos bajos de erosión y inestabilidad y buena regeneración potencial	Alto	3
Diversidad de vegetación (R)	Eriales, prados y matorrales	Bajo	1
	Coníferas, repoblaciones.	Moderado	2
	Diversificada (mezcla de claros y bosques)	Alto	3
Contraste suelo - vegetación (V)	Contraste visual alto entre el suelo y la vegetación	Bajo	1
	Contraste visual moderado entre el suelo y la vegetación	Moderado	2
	Contraste visual bajo entre el suelo y la vegetación adyacente	Alto	3
Vegetación. Regeneración potencial (R)	Potencial de regeneración bajo	Bajo	1
	Potencial de regeneración moderado	Moderado	2
	Regeneración alta	Alto	3
Contrastes de color roca - suelo (C)	Contraste alto	Bajo	1
	Contrastel moderado	Moderado	2
	Contraste bajo	Alto	3

• Fórmula para determinar la capacidad de absorción visual del paisaje (CAV):

$$CAV = P \times (D+E+V+R+C)$$

Donde:

P = pendiente

E = Estabilidad del suelo y erosionabilidad

D = Diversidad de vegetación V = Contraste suelo - vegetación

R = Vegetación. Regeneración potencial

C = contraste de color roca - suelo

Cuadro 1-4 Escala de referencia para la estimación del CAV y su correspondencia con la fragilidad

CAV	FRAGILIDAD	
Baja (1 - 7)	Alta	
Baja a media (8 - 14)	Media a alta	
Media (15 - 21)	Media	
Media a alta (22 – 28)	Baja a media	
Alta (≥29)	Baja	

Certificado

atribuciones conferidas por Ley Nº 30224, Ley de Creación del INACAL, y conforme al Reglamento de Organización y Funciones del INACAL, aprobado por DS N° 004-2015-PRODUCE y modificado por DS N° 008-2015-PRODUCE. La Dirección de Acreditación del Instituto Nacional de Calidad - INACAL, en ejercicio de las

OTORGA la presente Acreditación a:

ANALYTICAL LABORATORY E.I.R.L.

En su calidad de Laboratorio de Ensayo

Con base en el cumplimiento de los requisitos establecidos en la norma NTP-ISO/IEC 17025:2006 Requisitos Generales para el alcance de la acreditación contenido en el formato DA-acr-05P-17F, facultándolo a emitir Informes de para la Competencia de los Laboratorios de Ensayo y Calibración. Ensayo con Valor Oficial Sede Acreditada: Domicilio Prolongación Zarumilla. Mz. D2 Lote 3. Asociación Daniel Alcides Carrión, distrito de Bellavista provincia constitucional del Callao y departamento de Lima.

Fecha de Acreditación: 25 de julio de 2016 Fecha de Vencimiento: 25 de julio de 2019

Registro N° LE – 096 Fecha de emisión: 12 de agosto de 2016 DA-acr-01P-02M Ver. 00

Augusta Mello Romero de Acreditación

